train_dataset: dataset: name: hr_data_loader args: root_path: /data/kyanchen/datasets/UC/256 split_file: data_split/UC_split.json # root_path: /data/kyanchen/datasets/AID # split_file: data_split/AID_split.json split_key: train cache: none wrapper: name: inr_diinn_select_scale_sr_warp args: scales: [2, 2.5, 3, 3.5, 4] # scales: [1.5, 1.7, 2, 2.3, 2.5, 2.7, 3, 3.3, 3.5, 3.7, 4, 4.3, 4.5, 4.7, 5] patch_size: 48 augment: true val_mode: false test_mode: false batch_size: 8 num_workers: 4 val_dataset: dataset: name: hr_data_loader args: root_path: /data/kyanchen/datasets/UC/256 split_file: data_split/UC_split.json # root_path: /data/kyanchen/datasets/AID # split_file: data_split/AID_split.json split_key: test # first_k: 128 cache: none wrapper: name: cnn_fixed_scale_sr_warp args: scale_ratio: 2 patch_size: 48 augment: false val_mode: false test_mode: true batch_size: 4 num_workers: 4 eval_type: psnr+ssim data_norm: img: {sub: [0.5], div: [0.5]} gt: {sub: [0.5], div: [0.5]} model: name: funsr args: encoder_spec: name: edsr-baseline # name: rdn # name: rcan args: no_upsampling: true has_multiscale: true neck: name: transformer_neck args: d_dim: 256 downsample: true has_pe: true has_norm: true class_token: true num_encoder_layers: 3 decoder: name: sirens args: num_inner_layers: 9 is_residual: true global_decoder: name: sirens is_proj: true args: num_inner_layers: 9 is_residual: true encoder_rgb: true n_forward_times: 1 encode_hr_coord: true has_bn: true encode_scale_ratio: true local_unfold: false weight_gen_func: 'nearest-exact' # bilinear, nearest-exact,bicubic optimizer: name: adamw args: lr: 0.0001 #optimizer: # name: adam # args: # lr: 0.0001 epoch_max: 4000 lr_scheduler: # name: CosineAnnealingLR # T_max: 1500 # eta_min: 1.e-7 name: CosineAnnealingWarmUpLR epochs: 4000 warm_up_epochs: 50 eta_min: 1.e-8 # name: MultiStepLR # milestones: [2000, 3000] # gamma: 0.1 #resume: checkpoints/EXP20221215_00/epoch-last.pth epoch_val_interval: 50 epoch_save_interval: 300