FunSR / datasets /inr_diinn_sr_wrappers.py
KyanChen's picture
add
02c5426
import copy
import functools
import os
import random
import math
from PIL import Image
import numpy as np
import torch
from einops import rearrange
from torch.utils.data import Dataset
from torchvision import transforms
from datasets import register
from utils import to_pixel_samples, to_coordinates
import torchvision.transforms.functional as TF
import random
from typing import Sequence
class MyRotateTransform:
def __init__(self, angles: Sequence[int], p=0.5):
self.angles = angles
self.p = p
def __call__(self, x):
if torch.rand(1) < self.p:
return x
angle = random.choice(self.angles)
return TF.rotate(x, angle)
@register('inr_diinn_select_scale_sr_warp')
class INRSelectScaleSRWarp(Dataset):
def __init__(self,
dataset, scales, patch_size=48,
augment=False,
val_mode=False, test_mode=False
):
super(INRSelectScaleSRWarp, self).__init__()
self.dataset = dataset
self.scales = scales
self.patch_size = patch_size
self.augment = augment
self.test_mode = test_mode
self.val_mode = val_mode
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
# import pdb
# pdb.set_trace()
img_hr_ori, file_name = self.dataset[idx]
class_name = os.path.basename(os.path.dirname(file_name))
sample = {}
for scale in self.scales:
hr_size = self.patch_size * scale
hr_size = int(hr_size)
if self.test_mode or self.val_mode:
hr_size = int(self.patch_size * max(self.scales))
img_hr = transforms.CenterCrop(hr_size)(img_hr_ori)
else:
img_hr = transforms.RandomCrop(hr_size)(copy.deepcopy(img_hr_ori))
if self.augment:
img_hr = transforms.RandomHorizontalFlip(p=0.5)(img_hr)
img_hr = transforms.RandomVerticalFlip(p=0.5)(img_hr)
img_hr = MyRotateTransform([90, 180, 270], p=0.5)(img_hr)
img_lr = transforms.Resize(self.patch_size, TF.InterpolationMode.BICUBIC)(img_hr)
sample[scale] = {'img': img_lr, 'gt': img_hr, 'class_name': class_name}
return sample