KyanChen's picture
add
02c5426
raw
history blame
4.52 kB
from . import common
from argparse import Namespace
import torch
import torch.nn as nn
from models import register
import torch.nn.functional as F
def make_model(args, parent=False):
return DIM(args)
@register('DCM')
def DCM(scale_ratio, rgb_range=1):
args = Namespace()
args.scale = [scale_ratio]
args.n_colors = 3
args.rgb_range = rgb_range
return DIM(args)
class DIM(nn.Module):
def __init__(self, args, conv=common.default_conv):
super(DIM, self).__init__()
self.scale = args.scale[0]
# feature extractor part
self.fe_conv1 = common.BasicBlock(conv, args.n_colors, 196, kernel_size=3, bias=True, act=nn.PReLU())
self.fe_conv2 = common.BasicBlock(conv, 196, 166, kernel_size=3, bias=True, act=nn.PReLU())
self.fe_conv3 = common.BasicBlock(conv, 166, 148, kernel_size=3, bias=True, act=nn.PReLU())
self.fe_conv4 = common.BasicBlock(conv, 148, 133, kernel_size=3, bias=True, act=nn.PReLU())
self.fe_conv5 = common.BasicBlock(conv, 133, 120, kernel_size=3, bias=True, act=nn.PReLU())
self.fe_conv6 = common.BasicBlock(conv, 120, 108, kernel_size=3, bias=True, act=nn.PReLU())
self.fe_conv7 = common.BasicBlock(conv, 108, 97, kernel_size=3, bias=True, act=nn.PReLU())
self.fe_conv8 = common.BasicBlock(conv, 97, 86, kernel_size=3, bias=True, act=nn.PReLU())
self.fe_conv9 = common.BasicBlock(conv, 86, 76, kernel_size=3, bias=True, act=nn.PReLU())
self.fe_conv10 = common.BasicBlock(conv, 76, 66, kernel_size=3, bias=True, act=nn.PReLU())
self.fe_conv11 = common.BasicBlock(conv, 66, 57, kernel_size=3, bias=True, act=nn.PReLU())
self.fe_conv12 = common.BasicBlock(conv, 57, 48, kernel_size=3, bias=True, act=nn.PReLU())
# reconstruction part
self.re_a = common.BasicBlock(conv, 196 + 48, 64, kernel_size=3, bias=True, act=nn.PReLU())
self.re_b1 = common.BasicBlock(conv, 196 + 48, 32, kernel_size=3, bias=True, act=nn.PReLU())
self.re_b2 = common.BasicBlock(conv, 32, 32, kernel_size=3, bias=True, act=nn.PReLU())
self.re_u = common.Upsampler(conv, self.scale, 96, act=False)
self.re_r = conv(96, args.n_colors, kernel_size=1)
def forward(self, x, out_size=None):
residual = F.interpolate(x, scale_factor=self.scale, mode='bicubic')
# feature extractor part
fe_conv1 = self.fe_conv1(x)
fe_conv2 = self.fe_conv2(fe_conv1)
fe_conv3 = self.fe_conv3(fe_conv2)
fe_conv4 = self.fe_conv4(fe_conv3)
fe_conv5 = self.fe_conv5(fe_conv4)
fe_conv6 = self.fe_conv6(fe_conv5)
fe_conv7 = self.fe_conv7(fe_conv6)
fe_conv8 = self.fe_conv8(fe_conv7)
fe_conv9 = self.fe_conv9(fe_conv8)
fe_conv10 = self.fe_conv10(fe_conv9)
fe_conv11 = self.fe_conv11(fe_conv10)
fe_conv12 = self.fe_conv12(fe_conv11)
# reconstruction part
feat = torch.cat((fe_conv1, fe_conv12), dim=1)
re_a = self.re_a(feat)
re_b1 = self.re_b1(feat)
re_b2 = self.re_b2(re_b1)
feat = torch.cat((re_a, re_b2), dim=1)
re_u = self.re_u(feat)
re_r = self.re_r(re_u)
out = re_r + residual
return out
def load_state_dict(self, state_dict, strict=False):
own_state = self.state_dict()
for name, param in state_dict.items():
if name in own_state:
if isinstance(param, nn.Parameter):
param = param.data
try:
own_state[name].copy_(param)
except Exception:
if name.find('tail') >= 0:
print('Replace pre-trained upsampler to new one...')
else:
raise RuntimeError('While copying the parameter named {}, '
'whose dimensions in the model are {} and '
'whose dimensions in the checkpoint are {}.'
.format(name, own_state[name].size(), param.size()))
elif strict:
if name.find('tail') == -1:
raise KeyError('unexpected key "{}" in state_dict'
.format(name))
if strict:
missing = set(own_state.keys()) - set(state_dict.keys())
if len(missing) > 0:
raise KeyError('missing keys in state_dict: "{}"'.format(missing))