File size: 8,129 Bytes
02c5426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import argparse
import json
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '2'

import yaml
import torch
import torch.nn as nn
from tqdm import tqdm
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import MultiStepLR, CosineAnnealingLR

import datasets
import models
import utils
from test_inr_diinn_arbrcan_sadnarc_funsr_overnet import eval_psnr

device = 'cuda:0' if torch.cuda.is_available() else 'cpu'

def make_data_loader(spec, tag=''):
    if spec is None:
        return None

    dataset = datasets.make(spec['dataset'])
    dataset = datasets.make(spec['wrapper'], args={'dataset': dataset})

    log('{} dataset: size={}'.format(tag, len(dataset)))
    for k, v in dataset[0].items():
        if torch.is_tensor(v):
            log('  {}: shape={}'.format(k, v.shape))
        elif isinstance(v, str):
            pass
        elif isinstance(v, dict):
            for k0, v0 in v.items():
                if hasattr(v0, 'shape'):
                    log('  {}: shape={}'.format(k0, v0.shape))
        else:
            raise NotImplementedError

    loader = DataLoader(dataset, batch_size=spec['batch_size'],
        shuffle=(tag == 'train'), num_workers=4, pin_memory=True)
    return loader


def make_data_loaders():
    train_loader = make_data_loader(config.get('train_dataset'), tag='train')
    val_loader = make_data_loader(config.get('val_dataset'), tag='val')
    return train_loader, val_loader


def prepare_training():
    if config.get('resume') is not None:
        sv_file = torch.load(config['resume'])
        model = models.make(sv_file['model'], load_sd=True).cuda()
        optimizer = utils.make_optimizer(
            model.parameters(), sv_file['optimizer'], load_sd=True)
        epoch_start = sv_file['epoch'] + 1
        if config.get('multi_step_lr') is None:
            lr_scheduler = None
        else:
            lr_scheduler = MultiStepLR(optimizer, **config['multi_step_lr'])
        for _ in range(epoch_start - 1):
            lr_scheduler.step()
    else:
        model = models.make(config['model']).cuda()
        optimizer = utils.make_optimizer(
            model.parameters(), config['optimizer'])
        epoch_start = 1
        lr_scheduler = config.get('lr_scheduler')
        lr_scheduler_name = lr_scheduler.pop('name')
        if 'MultiStepLR' == lr_scheduler_name:
            lr_scheduler = MultiStepLR(optimizer, **lr_scheduler)
        elif 'CosineAnnealingLR' == lr_scheduler_name:
            lr_scheduler = CosineAnnealingLR(optimizer, **lr_scheduler)

    log('model: #params={}'.format(utils.compute_num_params(model, text=True)))
    return model, optimizer, epoch_start, lr_scheduler


def train(train_loader, model, optimizer):
    model.train()
    loss_fn = nn.L1Loss()
    train_loss = utils.AveragerList()

    data_norm = config['data_norm']
    t = data_norm['img']
    img_sub = torch.FloatTensor(t['sub']).view(1, -1, 1, 1).cuda()
    img_div = torch.FloatTensor(t['div']).view(1, -1, 1, 1).cuda()
    t = data_norm['gt']
    gt_sub = torch.FloatTensor(t['sub']).view(1, 1, -1).cuda()
    gt_div = torch.FloatTensor(t['div']).view(1, 1, -1).cuda()

    for batch in tqdm(train_loader, leave=False, desc='train'):
        # import pdb
        # pdb.set_trace()
        keys = list(batch.keys())
        batch = batch[keys[torch.randint(0, len(keys), [])]]
        for k, v in batch.items():
            if torch.is_tensor(v):
                batch[k] = v.to(device)

        img = (batch['img'] - img_sub) / img_div
        gt = (batch['gt'] - gt_sub) / gt_div
        pred = model(img, gt.shape[-2:])
        loss = loss_fn(pred, gt)

        train_loss.add(loss.item())

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    return train_loss.item()


def main(config_, save_path):
    global config, log, writer
    config = config_
    log, writer = utils.set_save_path(save_path)
    with open(os.path.join(save_path, 'config.yaml'), 'w') as f:
        yaml.dump(config, f, sort_keys=False)

    train_loader, val_loader = make_data_loaders()
    if config.get('data_norm') is None:
        config['data_norm'] = {
            'img': {'sub': [0], 'div': [1]},
            'gt': {'sub': [0], 'div': [1]}
        }

    model, optimizer, epoch_start, lr_scheduler = prepare_training()

    n_gpus = len(os.environ['CUDA_VISIBLE_DEVICES'].split(','))
    if n_gpus > 1:
        model = nn.parallel.DataParallel(model)

    epoch_max = config['epoch_max']
    epoch_val_interval = config.get('epoch_val_interval')
    epoch_save_interval = config.get('epoch_save_interval')
    max_val_v = -1e18

    timer = utils.Timer()

    for epoch in range(epoch_start, epoch_max + 1):
        t_epoch_start = timer.t()
        log_info = ['epoch {}/{}'.format(epoch, epoch_max)]

        writer.add_scalar('lr', optimizer.param_groups[0]['lr'], epoch)

        train_loss = train(train_loader, model, optimizer)
        if lr_scheduler is not None:
            lr_scheduler.step()

        log_info.append('train: loss={:.4f}'.format(train_loss))
        writer.add_scalars('loss', {'train': train_loss}, epoch)

        if device != 'cpu' and n_gpus > 1:
            model_ = model.module
        else:
            model_ = model
        model_spec = config['model']
        model_spec['sd'] = model_.state_dict()
        optimizer_spec = config['optimizer']
        optimizer_spec['sd'] = optimizer.state_dict()
        sv_file = {
            'model': model_spec,
            'optimizer': optimizer_spec,
            'epoch': epoch
        }

        torch.save(sv_file, os.path.join(save_path, 'epoch-last.pth'))

        if (epoch_save_interval is not None) and (epoch % epoch_save_interval == 0):
            torch.save(sv_file, os.path.join(save_path, 'epoch-{}.pth'.format(epoch)))

        if (epoch_val_interval is not None) and (epoch % epoch_val_interval == 0):
            if device != 'cpu' and n_gpus > 1 and (config.get('eval_bsize') is not None):
                model_ = model.module
            else:
                model_ = model

            file_names = json.load(open(config['val_dataset']['dataset']['args']['split_file']))['test']
            class_names = list(set([os.path.basename(os.path.dirname(x)) for x in file_names]))

            val_res_psnr, val_res_ssim = eval_psnr(val_loader, class_names, model_,
                                                   data_norm=config['data_norm'],
                                                   eval_type=config.get('eval_type'),
                                                   eval_bsize=config.get('eval_bsize'),
                                                   crop_border=4)

            log_info.append('val: psnr={:.4f}'.format(val_res_psnr['all']))
            writer.add_scalars('psnr', {'val': val_res_psnr['all']}, epoch)
            if val_res_psnr['all'] > max_val_v:
                max_val_v = val_res_psnr['all']
                torch.save(sv_file, os.path.join(save_path, 'epoch-best.pth'))

        t = timer.t()
        prog = (epoch - epoch_start + 1) / (epoch_max - epoch_start + 1)
        t_epoch = utils.time_text(t - t_epoch_start)
        t_elapsed, t_all = utils.time_text(t), utils.time_text(t / prog)
        log_info.append('{} {}/{}'.format(t_epoch, t_elapsed, t_all))

        log(', '.join(log_info))
        writer.flush()


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', default='configs/baselines/train_UC_1x-5x_INR_diinn_arbrcan_sadnarc_overnet.yaml')
    parser.add_argument('--name', default='EXP20221208_2')
    parser.add_argument('--tag', default=None)
    parser.add_argument('--gpu', default='0')
    args = parser.parse_args()

    with open(args.config, 'r') as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
        print('config loaded.')

    save_name = args.name
    if save_name is None:
        save_name = '_' + args.config.split('/')[-1][:-len('.yaml')]
    if args.tag is not None:
        save_name += '_' + args.tag
    save_path = os.path.join('./checkpoints', save_name)

    main(config, save_path)