File size: 11,807 Bytes
02c5426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import argparse
import json
import os

import math
from functools import partial
import seaborn as sns
import cv2.dnn
import numpy as np
import yaml
import torch
from einops import rearrange
from matplotlib import pyplot as plt
from torch.utils.data import DataLoader
from tqdm import tqdm

import datasets
import models
import utils

device = 'cuda:0' if torch.cuda.is_available() else 'cpu'

def batched_predict(model, img, coord, bsize):
    with torch.no_grad():
        pred = model(img, coord)
    return pred


def eval_psnr(loader, class_names, model,
              data_norm=None, eval_type=None, save_fig=False, save_featmap=False,
              scale_ratio=1, save_path=None, verbose=False, crop_border=4,
              cal_metrics=True,
              ):
    crop_border = int(crop_border) if crop_border else crop_border
    print('crop border: ', crop_border)
    model.eval()

    if data_norm is None:
        data_norm = {
            'img': {'sub': [0], 'div': [1]},
            'gt': {'sub': [0], 'div': [1]}
        }
    t = data_norm['img']
    img_sub = torch.FloatTensor(t['sub']).view(1, -1, 1, 1).to(device)
    img_div = torch.FloatTensor(t['div']).view(1, -1, 1, 1).to(device)
    t = data_norm['gt']
    gt_sub = torch.FloatTensor(t['sub']).view(1, -1, 1, 1).to(device)
    gt_div = torch.FloatTensor(t['div']).view(1, -1, 1, 1).to(device)

    if eval_type is None:
        metric_fn = [utils.calculate_psnr_pt, utils.calculate_ssim_pt]
    elif eval_type == 'psnr+ssim':
        metric_fn = [utils.calculate_psnr_pt, utils.calculate_ssim_pt]
    elif eval_type.startswith('div2k'):
        scale = int(eval_type.split('-')[1])
        metric_fn = partial(utils.calc_psnr, dataset='div2k', scale=scale)
    elif eval_type.startswith('benchmark'):
        scale = int(eval_type.split('-')[1])
        metric_fn = partial(utils.calc_psnr, dataset='benchmark', scale=scale)
    else:
        raise NotImplementedError

    val_res_psnr = utils.Averager(class_names)
    val_res_ssim = utils.Averager(class_names)

    pbar = tqdm(loader, leave=False, desc='val')
    for batch in pbar:
        for k, v in batch.items():
            if torch.is_tensor(v):
                batch[k] = v.to(device)

        img = (batch['img'] - img_sub) / img_div
        with torch.no_grad():
            preds = model(img, batch['gt'].shape[-2:])
        if save_featmap:
            pred = preds[0][-1]
            returned_featmap = preds[1]
            assert returned_featmap.size(1) == 6
        else:
            if isinstance(preds, list):
                pred = preds[-1]
        # import pdb
        # pdb.set_trace()
        pred = pred * gt_div + gt_sub
        # if eval_type is not None:  # reshape for shaving-eval
        #     ih, iw = batch['img'].shape[-2:]
        #     s = math.sqrt(batch['coord'].shape[1] / (ih * iw))
        #     if s > 1:
        #         shape = [batch['img'].shape[0], round(ih * s), round(iw * s), 3]
        #     else:
        #         shape = [batch['img'].shape[0], 32, batch['coord'].shape[1]//32, 3]
        #
        #     pred = pred.view(*shape) \
        #         .permute(0, 3, 1, 2).contiguous()
        #     batch['gt'] = batch['gt'].view(*shape) \
        #         .permute(0, 3, 1, 2).contiguous()

        # if crop_border is not None:
        #     h = math.sqrt(pred.shape[1])
        #     shape = [img.shape[0], round(h), round(h), 3]
        #     pred = pred.view(*shape).permute(0, 3, 1, 2).contiguous()
        #     batch['gt'] = batch['gt'].view(*shape).permute(0, 3, 1, 2).contiguous()
        # else:
        #     pred = pred.permute(0, 2, 1).contiguous()  # B 3 N
        #     batch['gt'] = batch['gt'].permute(0, 2, 1).contiguous()

        # import pdb
        # pdb.set_trace()

        if cal_metrics:
            res_psnr = metric_fn[0](
                pred,
                batch['gt'],
                crop_border=crop_border
            )
            res_ssim = metric_fn[1](
                pred,
                batch['gt'],
                crop_border=crop_border
            )
        else:
            res_psnr = torch.ones(len(pred))
            res_ssim = torch.ones(len(pred))

        file_names = batch.get('filename', None)
        if file_names is not None and save_featmap:
            for idx in range(len(batch['img'])):
                ori_img = batch['img'][idx].cpu().numpy() * 255
                ori_img = np.clip(ori_img, a_min=0, a_max=255)
                ori_img = ori_img.astype(np.uint8)
                ori_img = rearrange(ori_img, 'C H W -> H W C')

                pred_img = pred[idx].cpu().numpy() * 255
                pred_img = np.clip(pred_img, a_min=0, a_max=255)
                pred_img = pred_img.astype(np.uint8)
                pred_img = rearrange(pred_img, 'C H W -> H W C')

                is_normalize = True
                f_tensors = returned_featmap[idx]
                for idx_f in range(len(f_tensors)):
                    f_tensor = f_tensors[idx_f]
                    if is_normalize:
                        # normalize the features / feature maps
                        f_tensor = torch.sigmoid(f_tensor)
                    f_tensor = f_tensor.detach().cpu().numpy()
                    # for better visualization, you can normalize the feature heatmap
                    f_tensor = (f_tensor - np.min(f_tensor)) / (np.max(f_tensor) - np.min(f_tensor))
                    # f_tensor = (f_tensor - np.min(f_tensor)) / (np.max(f_tensor) - np.min(f_tensor))
                    sns.heatmap(f_tensor, vmin=0, vmax=1, cmap="jet", center=0.5)
                    plt.axis('off')
                    plt.xticks([])
                    plt.yticks([])
                    # plt.imshow(heatmap, cmap='YlGnBu', vmin=0, vmax=1)
                    # plt.show()
                    ori_file_name = f'{save_path}/{file_names[idx]}_{idx_f}.png'
                    plt.savefig(ori_file_name, dpi=600)
                    plt.close()

                gt_img = batch['gt'][idx].cpu().numpy() * 255
                gt_img = np.clip(gt_img, a_min=0, a_max=255)
                gt_img = gt_img.astype(np.uint8)
                gt_img = rearrange(gt_img, 'C H W -> H W C')

                psnr = res_psnr[idx].cpu().numpy()
                ssim = res_ssim[idx].cpu().numpy()
                ori_file_name = f'{save_path}/{file_names[idx]}_Ori.png'
                cv2.imwrite(ori_file_name, ori_img)
                pred_file_name = f'{save_path}/{file_names[idx]}_{scale_ratio}X_{psnr:.2f}_{ssim:.4f}.png'
                cv2.imwrite(pred_file_name, pred_img)
                gt_file_name = f'{save_path}/{file_names[idx]}_GT.png'
                cv2.imwrite(gt_file_name, gt_img)
                # import pdb
                # pdb.set_trace()

        if file_names is not None and save_fig:
            for idx in range(len(batch['img'])):
                ori_img = batch['img'][idx].cpu().numpy() * 255
                ori_img = np.clip(ori_img, a_min=0, a_max=255)
                ori_img = ori_img.astype(np.uint8)
                ori_img = rearrange(ori_img, 'C H W -> H W C')

                pred_img = pred[idx].cpu().numpy() * 255
                pred_img = np.clip(pred_img, a_min=0, a_max=255)
                pred_img = pred_img.astype(np.uint8)
                pred_img = rearrange(pred_img, 'C H W -> H W C')

                gt_img = batch['gt'][idx].cpu().numpy() * 255
                gt_img = np.clip(gt_img, a_min=0, a_max=255)
                gt_img = gt_img.astype(np.uint8)
                gt_img = rearrange(gt_img, 'C H W -> H W C')

                psnr = res_psnr[idx].cpu().numpy()
                ssim = res_ssim[idx].cpu().numpy()
                ori_file_name = f'{save_path}/{file_names[idx]}_Ori.png'
                cv2.imwrite(ori_file_name, ori_img)
                pred_file_name = f'{save_path}/{file_names[idx]}_{scale_ratio}X_{psnr:.2f}_{ssim:.4f}.png'
                cv2.imwrite(pred_file_name, pred_img)
                gt_file_name = f'{save_path}/{file_names[idx]}_GT.png'
                cv2.imwrite(gt_file_name, gt_img)

        val_res_psnr.add(batch['class_name'], res_psnr)
        val_res_ssim.add(batch['class_name'], res_ssim)

        if verbose:
            pbar.set_description(
                'val psnr: {:.4f} ssim: {:.4f}'.format(val_res_psnr.item()['all'], val_res_ssim.item()['all']))

    return val_res_psnr.item(), val_res_ssim.item()


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', default='configs/test_UC_INR_mysr.yaml')
    parser.add_argument('--model', default='checkpoints/EXP20220610_5/epoch-best.pth')
    parser.add_argument('--scale_ratio', default=4, type=float)
    parser.add_argument('--save_fig', default=False, type=bool)
    parser.add_argument('--save_featmap', default=False, type=bool)
    parser.add_argument('--save_path', default='tmp', type=str)
    parser.add_argument('--cal_metrics', default=True, type=bool)
    parser.add_argument('--return_class_metrics', default=False, type=bool)
    parser.add_argument('--dataset_name', default='UC', type=str)
    args = parser.parse_args()

    with open(args.config, 'r') as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
    root_split_file = {'UC':
        {
            'root_path': '/Users/kyanchen/Documents/UC/256',
            'split_file': '/Users/kyanchen/My_Code/sr/data_split/UC_split.json'
        },
        'AID':
            {
                'root_path': '/data/kyanchen/datasets/AID',
                'split_file': 'data_split/AID_split.json'
            }
    }
    config['test_dataset']['dataset']['args']['root_path'] = root_split_file[args.dataset_name]['root_path']
    config['test_dataset']['dataset']['args']['split_file'] = root_split_file[args.dataset_name]['split_file']

    config['test_dataset']['wrapper']['args']['scale_ratio'] = args.scale_ratio

    spec = config['test_dataset']
    dataset = datasets.make(spec['dataset'])
    dataset = datasets.make(spec['wrapper'], args={'dataset': dataset})
    loader = DataLoader(dataset, batch_size=spec['batch_size'], num_workers=0, pin_memory=True, shuffle=False, drop_last=False)
    if not os.path.exists(args.model):
        assert NameError
    model_spec = torch.load(args.model, map_location='cpu')['model']
    print(model_spec['args'])
    model = models.make(model_spec, load_sd=True).to(device)

    file_names = json.load(open(config['test_dataset']['dataset']['args']['split_file']))['test']
    class_names = list(set([os.path.basename(os.path.dirname(x)) for x in file_names]))

    crop_border = config['test_dataset']['wrapper']['args']['scale_ratio'] + 5
    dataset_name = os.path.basename(config['test_dataset']['dataset']['args']['split_file']).split('_')[0]
    max_scale = {'UC': 5, 'AID': 12}
    if args.scale_ratio > max_scale[dataset_name]:
        crop_border = int((args.scale_ratio - max_scale[dataset_name]) / 2 * 48)

    if args.save_fig or args.save_featmap:
        os.makedirs(args.save_path, exist_ok=True)

    res = eval_psnr(
        loader, class_names, model,
        data_norm=config.get('data_norm'),
        eval_type=config.get('eval_type'),
        crop_border=crop_border,
        verbose=True,
        save_fig=args.save_fig,
        save_featmap=args.save_featmap,
        scale_ratio=args.scale_ratio,
        save_path=args.save_path,
        cal_metrics=args.cal_metrics
    )

    if args.return_class_metrics:
        keys = list(res[0].keys())
        keys.sort()
        print('psnr')
        for k in keys:
            print(f'{k}: {res[0][k]:0.2f}')
        print('ssim')
        for k in keys:
            print(f'{k}: {res[1][k]:0.4f}')
    print(f'psnr: {res[0]["all"]:0.2f}')
    print(f'ssim: {res[1]["all"]:0.4f}')