File size: 8,068 Bytes
02c5426 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
import models
from models import register
from utils import make_coord, to_coordinates
@register('rs_super')
class RSSuper(nn.Module):
def __init__(self,
encoder_spec,
neck=None,
decoder=None,
input_rgb=True,
n_forward_times=1,
global_decoder=None
):
super().__init__()
self.n_forward_times = n_forward_times
self.encoder = models.make(encoder_spec)
if neck is not None:
self.neck = models.make(neck, args={'in_dim': self.encoder.out_dim})
self.input_rgb = input_rgb
decoder_in_dim = 5 if self.input_rgb else 2
if decoder is not None:
self.decoder = models.make(decoder, args={'modulation_dim': self.neck.out_dim, 'in_dim': decoder_in_dim})
if global_decoder is not None:
decoder_in_dim = 5 if self.input_rgb else 2
self.decoder_is_proj = global_decoder.get('is_proj', False)
self.grid_global = global_decoder.get('grid_global', False)
self.global_decoder = models.make(global_decoder, args={'modulation_dim': self.neck.out_dim, 'in_dim': decoder_in_dim})
if self.decoder_is_proj:
self.input_proj = nn.Sequential(
nn.Linear(self.neck.out_dim, self.neck.out_dim)
)
self.output_proj = nn.Sequential(
nn.Linear(3, 3)
)
def query_rgb(self, coord, cell=None):
feat = self.feat
if self.imnet is None:
ret = F.grid_sample(feat, coord.flip(-1).unsqueeze(1),
mode='nearest', align_corners=False)[:, :, 0, :] \
.permute(0, 2, 1)
return ret
if self.feat_unfold:
feat = F.unfold(feat, 3, padding=1).view(
feat.shape[0], feat.shape[1] * 9, feat.shape[2], feat.shape[3])
if self.local_ensemble:
vx_lst = [-1, 1]
vy_lst = [-1, 1]
eps_shift = 1e-6
else:
vx_lst, vy_lst, eps_shift = [0], [0], 0
# field radius (global: [-1, 1])
rx = 2 / feat.shape[-2] / 2
ry = 2 / feat.shape[-1] / 2
feat_coord = make_coord(feat.shape[-2:], flatten=False).cuda() \
.permute(2, 0, 1) \
.unsqueeze(0).expand(feat.shape[0], 2, *feat.shape[-2:])
preds = []
areas = []
for vx in vx_lst:
for vy in vy_lst:
coord_ = coord.clone()
coord_[:, :, 0] += vx * rx + eps_shift
coord_[:, :, 1] += vy * ry + eps_shift
coord_.clamp_(-1 + 1e-6, 1 - 1e-6)
q_feat = F.grid_sample(
feat, coord_.flip(-1).unsqueeze(1),
mode='nearest', align_corners=False)[:, :, 0, :] \
.permute(0, 2, 1)
q_coord = F.grid_sample(
feat_coord, coord_.flip(-1).unsqueeze(1),
mode='nearest', align_corners=False)[:, :, 0, :] \
.permute(0, 2, 1)
rel_coord = coord - q_coord
rel_coord[:, :, 0] *= feat.shape[-2]
rel_coord[:, :, 1] *= feat.shape[-1]
inp = torch.cat([q_feat, rel_coord], dim=-1)
if self.cell_decode:
rel_cell = cell.clone()
rel_cell[:, :, 0] *= feat.shape[-2]
rel_cell[:, :, 1] *= feat.shape[-1]
inp = torch.cat([inp, rel_cell], dim=-1)
bs, q = coord.shape[:2]
pred = self.imnet(inp.view(bs * q, -1)).view(bs, q, -1)
preds.append(pred)
area = torch.abs(rel_coord[:, :, 0] * rel_coord[:, :, 1])
areas.append(area + 1e-9)
tot_area = torch.stack(areas).sum(dim=0)
if self.local_ensemble:
t = areas[0]; areas[0] = areas[3]; areas[3] = t
t = areas[1]; areas[1] = areas[2]; areas[2] = t
ret = 0
for pred, area in zip(preds, areas):
ret = ret + pred * (area / tot_area).unsqueeze(-1)
return ret
def forward_backbone_neck(self, inp, coord):
# inp: 64x3x32x32
# coord: BxNx2
feat = self.encoder(inp) # 64x64x32x32
global_content, x_rep = self.neck(feat) # Bx1xC; BxCxHxW
return feat, x_rep, global_content
def forward_step(self, inp, coord, feat, x_rep, global_content, pred_rgb_value=None):
weight_gen_func = 'bilinear' # 'bilinear'
# grid: 先x再y
coord_ = coord.clone().unsqueeze(1).flip(-1) # Bx1xNxC
modulations = F.grid_sample(x_rep, coord_, padding_mode='border', mode=weight_gen_func,
align_corners=True).squeeze(2) # B C N
modulations = rearrange(modulations, 'B C N -> (B N) C')
feat_coord = to_coordinates(feat.shape[-2:], return_map=True).to(inp.device)
feat_coord = repeat(feat_coord, 'H W C -> B C H W', B=inp.size(0)) # 坐标是[y, x]
nearest_coord = F.grid_sample(feat_coord, coord_, mode='nearest', align_corners=True).squeeze(2) # B 2 N
nearest_coord = rearrange(nearest_coord, 'B C N -> B N C') # B N 2
relative_coord = coord - nearest_coord
relative_coord[:, :, 0] *= feat.shape[-2]
relative_coord[:, :, 1] *= feat.shape[-1]
relative_coord = rearrange(relative_coord, 'B N C -> (B N) C')
decoder_input = relative_coord
interpolated_rgb = None
if self.input_rgb:
if pred_rgb_value is not None:
interpolated_rgb = rearrange(pred_rgb_value, 'B N C -> (B N) C')
else:
interpolated_rgb = F.grid_sample(inp, coord_, padding_mode='border', mode='bilinear', align_corners=True).squeeze(2) # B 3 N
interpolated_rgb = rearrange(interpolated_rgb, 'B C N -> (B N) C')
decoder_input = torch.cat((decoder_input, interpolated_rgb), dim=-1)
decoder_output = self.decoder(decoder_input, modulations)
decoder_output = rearrange(decoder_output, '(B N) C -> B N C', B=inp.size(0))
if hasattr(self, 'global_decoder'):
# coord: BxNx2
# global_content: Bx1xC
if self.decoder_is_proj:
global_content = self.input_proj(global_content) # B 1 C
global_modulations = repeat(global_content, 'B N C -> B (N S) C', S=coord.size(1))
global_modulations = rearrange(global_modulations, 'B N C -> (B N) C')
if self.grid_global:
# import pdb
# pdb.set_trace()
global_decoder_input = decoder_input
else:
global_decoder_input = rearrange(coord, 'B N C -> (B N) C')
if self.input_rgb:
global_decoder_input = torch.cat((global_decoder_input, interpolated_rgb), dim=-1)
global_decoder_output = self.global_decoder(global_decoder_input, global_modulations)
global_decoder_output = rearrange(global_decoder_output, '(B N) C -> B N C', B=inp.size(0))
if self.decoder_is_proj:
decoder_output = self.output_proj(global_decoder_output + decoder_output)
else:
decoder_output = global_decoder_output + decoder_output
return decoder_output
def forward(self, inp, coord):
# import pdb
# pdb.set_trace()
pred_rgb_value = None
feat, x_rep, global_content = self.forward_backbone_neck(inp, coord)
return_pred_rgb_value = []
for n_time in range(self.n_forward_times):
pred_rgb_value = self.forward_step(inp, coord, feat, x_rep, global_content, pred_rgb_value)
return_pred_rgb_value.append(pred_rgb_value)
return return_pred_rgb_value
|