File size: 8,205 Bytes
02c5426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import argparse
import json
import os

import math
from functools import partial

import cv2
import numpy as np
import yaml
import torch
from einops import rearrange
from torch.utils.data import DataLoader
from tqdm import tqdm

import datasets
import models
import utils

device = 'cuda:0' if torch.cuda.is_available() else 'cpu'

def batched_predict(model, inp, coord, bsize):
    with torch.no_grad():
        pred = model(inp, coord)
    return pred


def eval_psnr(loader, class_names, model,
              data_norm=None, eval_type=None, save_fig=False,
              scale_ratio=1, save_path=None, verbose=False, crop_border=4,
              cal_metrics=True,
              ):
    crop_border = int(crop_border) if crop_border else crop_border
    print('crop border: ', crop_border)
    model.eval()

    if data_norm is None:
        data_norm = {
            'inp': {'sub': [0], 'div': [1]},
            'gt': {'sub': [0], 'div': [1]}
        }
    t = data_norm['inp']
    inp_sub = torch.FloatTensor(t['sub']).view(1, -1, 1, 1).to(device)
    inp_div = torch.FloatTensor(t['div']).view(1, -1, 1, 1).to(device)
    t = data_norm['gt']
    gt_sub = torch.FloatTensor(t['sub']).view(1, 1, -1).to(device)
    gt_div = torch.FloatTensor(t['div']).view(1, 1, -1).to(device)

    if eval_type is None:
        metric_fn = [utils.calculate_psnr_pt, utils.calculate_ssim_pt]
    elif eval_type == 'psnr+ssim':
        metric_fn = [utils.calculate_psnr_pt, utils.calculate_ssim_pt]
    elif eval_type.startswith('div2k'):
        scale = int(eval_type.split('-')[1])
        metric_fn = partial(utils.calc_psnr, dataset='div2k', scale=scale)
    elif eval_type.startswith('benchmark'):
        scale = int(eval_type.split('-')[1])
        metric_fn = partial(utils.calc_psnr, dataset='benchmark', scale=scale)
    else:
        raise NotImplementedError

    val_res_psnr = utils.Averager(class_names)
    val_res_ssim = utils.Averager(class_names)

    pbar = tqdm(loader, leave=False, desc='val')
    for batch in pbar:
        for k, v in batch.items():
            if torch.is_tensor(v):
                batch[k] = v.to(device)

        inp = (batch['inp'] - inp_sub) / inp_div

        with torch.no_grad():
            pred = model(inp, batch['coord'], batch['cell'])
        pred = pred * gt_div + gt_sub

        if eval_type is not None:  # reshape for shaving-eval
            ih, iw = batch['inp'].shape[-2:]
            s = math.sqrt(batch['coord'].shape[1] / (ih * iw))
            if s > 1:
                shape = [batch['inp'].shape[0], round(ih * s), round(iw * s), 3]
            else:
                shape = [batch['inp'].shape[0], 32, batch['coord'].shape[1]//32, 3]

            pred = pred.view(*shape) \
                .permute(0, 3, 1, 2).contiguous()
            batch['gt'] = batch['gt'].view(*shape) \
                .permute(0, 3, 1, 2).contiguous()
        if cal_metrics:
            res_psnr = metric_fn[0](
                pred,
                batch['gt'],
                crop_border=crop_border
            )
            res_ssim = metric_fn[1](
                pred,
                batch['gt'],
                crop_border=crop_border
            )
        else:
            res_psnr = torch.ones(len(pred))
            res_ssim = torch.ones(len(pred))

        file_names = batch.get('filename', None)
        if file_names is not None and save_fig:
            for idx in range(len(batch['inp'])):
                ori_img = batch['inp'][idx].cpu().numpy() * 255
                ori_img = np.clip(ori_img, a_min=0, a_max=255)
                ori_img = ori_img.astype(np.uint8)
                ori_img = rearrange(ori_img, 'C H W -> H W C')

                pred_img = pred[idx].cpu().numpy() * 255
                pred_img = np.clip(pred_img, a_min=0, a_max=255)
                pred_img = pred_img.astype(np.uint8)
                pred_img = rearrange(pred_img, 'C H W -> H W C')

                gt_img = batch['gt'][idx].cpu().numpy() * 255
                gt_img = np.clip(gt_img, a_min=0, a_max=255)
                gt_img = gt_img.astype(np.uint8)
                gt_img = rearrange(gt_img, 'C H W -> H W C')

                psnr = res_psnr[idx].cpu().numpy()
                ssim = res_ssim[idx].cpu().numpy()
                ori_file_name = f'{save_path}/{file_names[idx]}_Ori.png'
                cv2.imwrite(ori_file_name, ori_img)
                pred_file_name = f'{save_path}/{file_names[idx]}_{scale_ratio}X_{psnr:.2f}_{ssim:.4f}.png'
                cv2.imwrite(pred_file_name, pred_img)
                gt_file_name = f'{save_path}/{file_names[idx]}_GT.png'
                cv2.imwrite(gt_file_name, gt_img)

        val_res_psnr.add(batch['class_name'], res_psnr)
        val_res_ssim.add(batch['class_name'], res_ssim)

        if verbose:
            pbar.set_description(
                'val psnr: {:.4f} ssim: {:.4f}'.format(val_res_psnr.item()['all'], val_res_ssim.item()['all']))

    return val_res_psnr.item(), val_res_ssim.item()


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', default='configs/test_INR_mysr.yaml')
    parser.add_argument('--model', default='checkpoints/EXP20220610_5/epoch-best.pth')
    parser.add_argument('--scale_ratio', default=4, type=float)
    parser.add_argument('--save_fig', default=False, type=bool)
    parser.add_argument('--save_path', default='tmp', type=str)
    parser.add_argument('--cal_metrics', default=True, type=bool)
    parser.add_argument('--return_class_metrics', default=False, type=bool)
    parser.add_argument('--dataset_name', default='UC', type=str)
    args = parser.parse_args()

    with open(args.config, 'r') as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
    root_split_file = {'UC':
        {
            'root_path': '/data/kyanchen/datasets/UC/256',
            'split_file': 'data_split/UC_split.json'
        },
        'AID':
            {
                'root_path': '/data/kyanchen/datasets/AID',
                'split_file': 'data_split/AID_split.json'
            }
    }
    config['test_dataset']['dataset']['args']['root_path'] = root_split_file[args.dataset_name]['root_path']
    config['test_dataset']['dataset']['args']['split_file'] = root_split_file[args.dataset_name]['split_file']

    config['test_dataset']['wrapper']['args']['scale_ratio'] = args.scale_ratio

    spec = config['test_dataset']
    dataset = datasets.make(spec['dataset'])
    dataset = datasets.make(spec['wrapper'], args={'dataset': dataset})
    loader = DataLoader(dataset, batch_size=spec['batch_size'], num_workers=0, pin_memory=True, shuffle=False,
                        drop_last=False)
    if not os.path.exists(args.model):
        assert NameError
    model_spec = torch.load(args.model)['model']
    print(model_spec['args'])
    model = models.make(model_spec, load_sd=True).to(device)

    file_names = json.load(open(config['test_dataset']['dataset']['args']['split_file']))['test']
    class_names = list(set([os.path.basename(os.path.dirname(x)) for x in file_names]))

    crop_border = config['test_dataset']['wrapper']['args']['scale_ratio'] + 5
    dataset_name = os.path.basename(config['test_dataset']['dataset']['args']['split_file']).split('_')[0]
    max_scale = {'UC': 5, 'AID': 12}
    if args.scale_ratio > max_scale[dataset_name]:
        crop_border = int((args.scale_ratio - max_scale[dataset_name]) / 2 * 48)

    if args.save_fig:
        os.makedirs(args.save_path, exist_ok=True)

    res = eval_psnr(
        loader, class_names, model,
        data_norm=config.get('data_norm'),
        eval_type=config.get('eval_type'),
        crop_border=crop_border,
        verbose=True,
        save_fig=args.save_fig,
        scale_ratio=args.scale_ratio,
        save_path=args.save_path,
        cal_metrics=args.cal_metrics
    )

    if args.return_class_metrics:
        keys = list(res[0].keys())
        keys.sort()
        print('psnr')
        for k in keys:
            print(f'{k}: {res[0][k]:0.2f}')
        print('ssim')
        for k in keys:
            print(f'{k}: {res[1][k]:0.4f}')
    print(f'psnr: {res[0]["all"]:0.2f}')
    print(f'ssim: {res[1]["all"]:0.4f}')