Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
def load_model(model_directory):
|
6 |
+
# Assuming 'config.json' and 'pytorch_model.bin' are in 'model_directory'
|
7 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_directory)
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_directory)
|
9 |
+
return model, tokenizer
|
10 |
+
|
11 |
+
def predict(model, tokenizer, input_text):
|
12 |
+
# Preprocess the input
|
13 |
+
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
|
14 |
+
|
15 |
+
# Move tensors to the same device as the model
|
16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
model.to(device)
|
18 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
19 |
+
|
20 |
+
# Model in evaluation mode
|
21 |
+
model.eval()
|
22 |
+
|
23 |
+
# Make the model generate a prediction
|
24 |
+
with torch.no_grad():
|
25 |
+
outputs = model(**inputs)
|
26 |
+
logits = outputs.logits
|
27 |
+
|
28 |
+
# Convert logits to probabilities
|
29 |
+
probabilities = F.softmax(logits, dim=1)
|
30 |
+
|
31 |
+
# Get the predicted class and the probabilities
|
32 |
+
predicted_class = torch.argmax(probabilities, dim=1).cpu().numpy()
|
33 |
+
probabilities = probabilities.cpu().numpy()
|
34 |
+
|
35 |
+
return predicted_class, probabilities
|
36 |
+
|
37 |
+
def main():
|
38 |
+
# Replace 'your-model-directory' with the actual path to your model directory
|
39 |
+
model_directory = "Kurkur99/modeling" # e.g., "Kurkur99/Kurkur99/transactionmerchant/model_directory"
|
40 |
+
model, tokenizer = load_model(model_directory)
|
41 |
+
|
42 |
+
# Example input text
|
43 |
+
input_text = "Example input text for prediction"
|
44 |
+
|
45 |
+
# Get predictions
|
46 |
+
predicted_class, probabilities = predict(model, tokenizer, input_text)
|
47 |
+
|
48 |
+
# Output the results
|
49 |
+
print(f"Predicted Class: {predicted_class[0]}")
|
50 |
+
print(f"Probabilities: {probabilities[0]}")
|
51 |
+
|
52 |
+
if __name__ == "__main__":
|
53 |
+
main()
|