Spaces:
Running
on
Zero
Running
on
Zero
<feat> optimize output format and add examples
Browse files- .gitignore +3 -1
- app.py +187 -12
- assets/README.md +1 -0
.gitignore
CHANGED
|
@@ -1 +1,3 @@
|
|
| 1 |
-
__pycache__/
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__/
|
| 2 |
+
*.jpg
|
| 3 |
+
*.png
|
app.py
CHANGED
|
@@ -9,6 +9,8 @@ import copy
|
|
| 9 |
import cv2
|
| 10 |
import spaces
|
| 11 |
import gc
|
|
|
|
|
|
|
| 12 |
import gradio as gr
|
| 13 |
import numpy as np
|
| 14 |
|
|
@@ -285,8 +287,167 @@ def process_image_and_text(condition_image, target_prompt, condition_image_promp
|
|
| 285 |
out = (out * 255).astype(np.uint8)
|
| 286 |
out = Image.fromarray(out)
|
| 287 |
output_images.append(out)
|
| 288 |
-
|
| 289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
|
| 291 |
def create_app():
|
| 292 |
with gr.Blocks() as app:
|
|
@@ -315,7 +476,8 @@ def create_app():
|
|
| 315 |
)
|
| 316 |
gr.Markdown(notice, elem_id="notice")
|
| 317 |
target_prompt = gr.Textbox(lines=2, label="Target Prompt", elem_id="tp")
|
| 318 |
-
|
|
|
|
| 319 |
random_seed = gr.Number(label="Random Seed", precision=0, value=0, elem_id="seed")
|
| 320 |
num_steps = gr.Number(label="Diffusion Inference Steps", precision=0, value=50, elem_id="steps")
|
| 321 |
inpainting = gr.Checkbox(label="Inpainting", value=False, elem_id="inpainting")
|
|
@@ -327,20 +489,33 @@ def create_app():
|
|
| 327 |
|
| 328 |
with gr.Column(variant="panel", elem_classes="outputPanel"):
|
| 329 |
# output_image = gr.Image(type="pil", elem_id="output")
|
| 330 |
-
output_images = gr.Gallery(
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
)
|
| 339 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
submit_btn.click(
|
| 341 |
fn=process_image_and_text,
|
| 342 |
inputs=[condition_image, target_prompt, condition_image_prompt, task, random_seed, num_steps, inpainting, fill_x1, fill_x2, fill_y1, fill_y2],
|
| 343 |
-
outputs=
|
| 344 |
)
|
| 345 |
|
| 346 |
return app
|
|
|
|
| 9 |
import cv2
|
| 10 |
import spaces
|
| 11 |
import gc
|
| 12 |
+
import tempfile
|
| 13 |
+
import imageio
|
| 14 |
import gradio as gr
|
| 15 |
import numpy as np
|
| 16 |
|
|
|
|
| 287 |
out = (out * 255).astype(np.uint8)
|
| 288 |
out = Image.fromarray(out)
|
| 289 |
output_images.append(out)
|
| 290 |
+
|
| 291 |
+
# video = [np.array(img.convert('RGB')) for img in output_images[1:] + [output_images[0]]]
|
| 292 |
+
# video = np.stack(video, axis=0)
|
| 293 |
+
|
| 294 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as f:
|
| 295 |
+
video_path = f.name
|
| 296 |
+
imageio.mimsave(video_path, output_images[1:]+[output_images[0]], fps=5)
|
| 297 |
+
|
| 298 |
+
return output_images[0], video_path
|
| 299 |
+
|
| 300 |
+
def get_samples():
|
| 301 |
+
sample_list = [
|
| 302 |
+
{
|
| 303 |
+
"task": "subject_driven",
|
| 304 |
+
"input": "assets/subject_driven_image_generation_dreambench_input.jpg",
|
| 305 |
+
"target_prompt": "a cat in a chef outfit",
|
| 306 |
+
"condition_image_prompt": "a cat",
|
| 307 |
+
"output": "assets/subject_driven_image_generation_dreambench_output.png",
|
| 308 |
+
"inpainting": False,
|
| 309 |
+
"fill_x1": None,
|
| 310 |
+
"fill_x2": None,
|
| 311 |
+
"fill_y1": None,
|
| 312 |
+
"fill_y2": None,
|
| 313 |
+
},
|
| 314 |
+
{
|
| 315 |
+
"task": "subject_driven",
|
| 316 |
+
"input": "assets/subject_driven_image_generation_input.jpg",
|
| 317 |
+
"target_prompt": "The woman stands in a snowy forest, captured in a half-portrait",
|
| 318 |
+
"condition_image_prompt": "Woman in cream knit sweater sits calmly by a crackling fireplace, surrounded by warm candlelight and rustic wooden shelves",
|
| 319 |
+
"output": "assets/subject_driven_image_generation_output.png",
|
| 320 |
+
"inpainting": False,
|
| 321 |
+
"fill_x1": None,
|
| 322 |
+
"fill_x2": None,
|
| 323 |
+
"fill_y1": None,
|
| 324 |
+
"fill_y2": None,
|
| 325 |
+
},
|
| 326 |
+
{
|
| 327 |
+
"task": "canny",
|
| 328 |
+
"input": "assets/canny_to_image_input.jpg",
|
| 329 |
+
"target_prompt": "Mosquito frozen in clear ice cube on sand, glowing sunset casting golden light with misty halo around ice",
|
| 330 |
+
"condition_image_prompt": "",
|
| 331 |
+
"output": "assets/canny_to_image_output.png",
|
| 332 |
+
"inpainting": False,
|
| 333 |
+
"fill_x1": None,
|
| 334 |
+
"fill_x2": None,
|
| 335 |
+
"fill_y1": None,
|
| 336 |
+
"fill_y2": None,
|
| 337 |
+
},
|
| 338 |
+
{
|
| 339 |
+
"task": "coloring",
|
| 340 |
+
"input": "assets/colorization_input.jpg",
|
| 341 |
+
"target_prompt": "A vibrant young woman with rainbow glasses, yellow eyes, and colorful feather accessory against a bright yellow background",
|
| 342 |
+
"condition_image_prompt": "",
|
| 343 |
+
"output": "assets/colorization_output.png",
|
| 344 |
+
"inpainting": False,
|
| 345 |
+
"fill_x1": None,
|
| 346 |
+
"fill_x2": None,
|
| 347 |
+
"fill_y1": None,
|
| 348 |
+
"fill_y2": None,
|
| 349 |
+
},
|
| 350 |
+
{
|
| 351 |
+
"task": "deblurring",
|
| 352 |
+
"input": "assets/deblurring_input.jpg",
|
| 353 |
+
"target_prompt": "Vibrant rainbow ball creates dramatic splash in clear water, bubbles swirling against crisp white background",
|
| 354 |
+
"condition_image_prompt": "",
|
| 355 |
+
"output": "assets/deblurring_output.png",
|
| 356 |
+
"inpainting": False,
|
| 357 |
+
"fill_x1": None,
|
| 358 |
+
"fill_x2": None,
|
| 359 |
+
"fill_y1": None,
|
| 360 |
+
"fill_y2": None,
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"task": "depth",
|
| 364 |
+
"input": "assets/depth_to_image_input.jpg",
|
| 365 |
+
"target_prompt": "Golden-brown cat-shaped bread loaf with closed eyes rests on wooden table, soft kitchen blur in background",
|
| 366 |
+
"condition_image_prompt": "",
|
| 367 |
+
"output": "assets/depth_to_image_output.png",
|
| 368 |
+
"inpainting": False,
|
| 369 |
+
"fill_x1": None,
|
| 370 |
+
"fill_x2": None,
|
| 371 |
+
"fill_y1": None,
|
| 372 |
+
"fill_y2": None,
|
| 373 |
+
},
|
| 374 |
+
{
|
| 375 |
+
"task": "depth_pred",
|
| 376 |
+
"input": "assets/depth_prediction_input.jpg",
|
| 377 |
+
"target_prompt": "Steaming bowl of ramen with pork slices, soft-boiled egg, greens, and scallions in rich broth on wooden table",
|
| 378 |
+
"condition_image_prompt": "",
|
| 379 |
+
"output": "assets/depth_prediction_output.png",
|
| 380 |
+
"inpainting": False,
|
| 381 |
+
"fill_x1": None,
|
| 382 |
+
"fill_x2": None,
|
| 383 |
+
"fill_y1": None,
|
| 384 |
+
"fill_y2": None,
|
| 385 |
+
},
|
| 386 |
+
{
|
| 387 |
+
"task": "fill",
|
| 388 |
+
"input": "assets/inpainting_input.jpg",
|
| 389 |
+
"target_prompt": "Mona Lisa dons a medical mask, her enigmatic smile now concealed beneath crisp white fabric",
|
| 390 |
+
"condition_image_prompt": "",
|
| 391 |
+
"output": "assets/inpainting_output.png",
|
| 392 |
+
"inpainting": True,
|
| 393 |
+
"fill_x1": 170,
|
| 394 |
+
"fill_x2": 300,
|
| 395 |
+
"fill_y1": 190,
|
| 396 |
+
"fill_y2": 290,
|
| 397 |
+
},
|
| 398 |
+
{
|
| 399 |
+
"task": "fill",
|
| 400 |
+
"input": "assets/outpainting_input.jpg",
|
| 401 |
+
"target_prompt": "Her left hand emerges at the frame's lower right, delicately cradling a vibrant red flower against the black void",
|
| 402 |
+
"condition_image_prompt": "",
|
| 403 |
+
"output": "assets/outpainting_output.png",
|
| 404 |
+
"inpainting": False,
|
| 405 |
+
"fill_x1": 155,
|
| 406 |
+
"fill_x2": 512,
|
| 407 |
+
"fill_y1": 0,
|
| 408 |
+
"fill_y2": 330,
|
| 409 |
+
},
|
| 410 |
+
{
|
| 411 |
+
"task": "sr",
|
| 412 |
+
"input": "assets/super_resolution_input.jpg",
|
| 413 |
+
"target_prompt": "Crispy buffalo wings and golden fries rest on a red-and-white checkered paper lining a gleaming metal tray, with creamy dip",
|
| 414 |
+
"condition_image_prompt": "",
|
| 415 |
+
"output": "assets/super_resolution_output.png",
|
| 416 |
+
"inpainting": False,
|
| 417 |
+
"fill_x1": None,
|
| 418 |
+
"fill_x2": None,
|
| 419 |
+
"fill_y1": None,
|
| 420 |
+
"fill_y2": None,
|
| 421 |
+
},
|
| 422 |
+
{
|
| 423 |
+
"task": "style_transfer",
|
| 424 |
+
"input": "assets/style_transfer_input.png",
|
| 425 |
+
"target_prompt": "bitmoji style. An orange cat sits quietly on the stone slab. Beside it are the green grasses. With its ears perked up, it looks to one side.",
|
| 426 |
+
"condition_image_prompt": "An orange cat sits quietly on the stone slab. Beside it are the green grasses. With its ears perked up, it looks to one side.",
|
| 427 |
+
"output": "assets/style_transfer_output.png",
|
| 428 |
+
"inpainting": False,
|
| 429 |
+
"fill_x1": None,
|
| 430 |
+
"fill_x2": None,
|
| 431 |
+
"fill_y1": None,
|
| 432 |
+
"fill_y2": None,
|
| 433 |
+
},
|
| 434 |
+
]
|
| 435 |
+
|
| 436 |
+
return [
|
| 437 |
+
[
|
| 438 |
+
sample['task'],
|
| 439 |
+
Image.open(sample['input']),
|
| 440 |
+
sample['target_prompt'],
|
| 441 |
+
sample['condition_image_prompt'],
|
| 442 |
+
Image.open(sample['output']),
|
| 443 |
+
sample['inpainting'],
|
| 444 |
+
sample['fill_x1'],
|
| 445 |
+
sample['fill_x2'],
|
| 446 |
+
sample['fill_y1'],
|
| 447 |
+
sample['fill_y2'],
|
| 448 |
+
]
|
| 449 |
+
for sample in sample_list
|
| 450 |
+
]
|
| 451 |
|
| 452 |
def create_app():
|
| 453 |
with gr.Blocks() as app:
|
|
|
|
| 476 |
)
|
| 477 |
gr.Markdown(notice, elem_id="notice")
|
| 478 |
target_prompt = gr.Textbox(lines=2, label="Target Prompt", elem_id="tp")
|
| 479 |
+
gr.Markdown("**Condition Image Prompt** _(Only required by Subject-driven Image Generation and Style Transfer tasks)_")
|
| 480 |
+
condition_image_prompt = gr.Textbox(lines=2, label="Condition Image Prompt", elem_id="cp")
|
| 481 |
random_seed = gr.Number(label="Random Seed", precision=0, value=0, elem_id="seed")
|
| 482 |
num_steps = gr.Number(label="Diffusion Inference Steps", precision=0, value=50, elem_id="steps")
|
| 483 |
inpainting = gr.Checkbox(label="Inpainting", value=False, elem_id="inpainting")
|
|
|
|
| 489 |
|
| 490 |
with gr.Column(variant="panel", elem_classes="outputPanel"):
|
| 491 |
# output_image = gr.Image(type="pil", elem_id="output")
|
| 492 |
+
# output_images = gr.Gallery(
|
| 493 |
+
# label="Output Images",
|
| 494 |
+
# show_label=True,
|
| 495 |
+
# elem_id="output_gallery",
|
| 496 |
+
# columns=1,
|
| 497 |
+
# rows=10,
|
| 498 |
+
# object_fit="contain",
|
| 499 |
+
# height="auto",
|
| 500 |
+
# )
|
| 501 |
+
output_image = gr.Image(
|
| 502 |
+
type="pil", label="Output Image", elem_id="output_image"
|
| 503 |
+
)
|
| 504 |
+
output_video = gr.Video(
|
| 505 |
+
label="Output Video", elem_id="output_video"
|
| 506 |
)
|
| 507 |
|
| 508 |
+
with gr.Row():
|
| 509 |
+
examples = gr.Examples(
|
| 510 |
+
examples=get_samples(),
|
| 511 |
+
inputs=[task, condition_image, target_prompt, condition_image_prompt, output_image, inpainting, fill_x1, fill_x2, fill_y1, fill_y2],
|
| 512 |
+
label="Examples",
|
| 513 |
+
)
|
| 514 |
+
|
| 515 |
submit_btn.click(
|
| 516 |
fn=process_image_and_text,
|
| 517 |
inputs=[condition_image, target_prompt, condition_image_prompt, task, random_seed, num_steps, inpainting, fill_x1, fill_x2, fill_y1, fill_y2],
|
| 518 |
+
outputs=[output_image, output_video],
|
| 519 |
)
|
| 520 |
|
| 521 |
return app
|
assets/README.md
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Here are some examples.
|