Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 The HunyuanVideo Team and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Modified by [Hengyuan Cao] in 2025. | |
| import inspect | |
| from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| from transformers import ( | |
| CLIPImageProcessor, | |
| CLIPTextModel, | |
| CLIPTokenizer, | |
| LlamaTokenizerFast, | |
| LlavaForConditionalGeneration, | |
| ) | |
| from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
| from diffusers.loaders import HunyuanVideoLoraLoaderMixin | |
| from diffusers.models import AutoencoderKLHunyuanVideo, HunyuanVideoTransformer3DModel | |
| from diffusers.schedulers import FlowMatchEulerDiscreteScheduler | |
| from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.video_processor import VideoProcessor | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.pipelines.hunyuan_video.pipeline_output import HunyuanVideoPipelineOutput | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| XLA_AVAILABLE = True | |
| else: | |
| XLA_AVAILABLE = False | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```python | |
| >>> import torch | |
| >>> from diffusers import HunyuanVideoImageToVideoPipeline, HunyuanVideoTransformer3DModel | |
| >>> from diffusers.utils import load_image, export_to_video | |
| >>> # Available checkpoints: hunyuanvideo-community/HunyuanVideo-I2V, hunyuanvideo-community/HunyuanVideo-I2V-33ch | |
| >>> model_id = "hunyuanvideo-community/HunyuanVideo-I2V" | |
| >>> transformer = HunyuanVideoTransformer3DModel.from_pretrained( | |
| ... model_id, subfolder="transformer", torch_dtype=torch.bfloat16 | |
| ... ) | |
| >>> pipe = HunyuanVideoImageToVideoPipeline.from_pretrained( | |
| ... model_id, transformer=transformer, torch_dtype=torch.float16 | |
| ... ) | |
| >>> pipe.vae.enable_tiling() | |
| >>> pipe.to("cuda") | |
| >>> prompt = "A man with short gray hair plays a red electric guitar." | |
| >>> image = load_image( | |
| ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/guitar-man.png" | |
| ... ) | |
| >>> # If using hunyuanvideo-community/HunyuanVideo-I2V | |
| >>> output = pipe(image=image, prompt=prompt, guidance_scale=6.0).frames[0] | |
| >>> # If using hunyuanvideo-community/HunyuanVideo-I2V-33ch | |
| >>> output = pipe(image=image, prompt=prompt, guidance_scale=1.0, true_cfg_scale=1.0).frames[0] | |
| >>> export_to_video(output, "output.mp4", fps=15) | |
| ``` | |
| """ | |
| DEFAULT_PROMPT_TEMPLATE = { | |
| "template": ( | |
| "<|start_header_id|>system<|end_header_id|>\n\n<image>\nDescribe the video by detailing the following aspects according to the reference image: " | |
| "1. The main content and theme of the video." | |
| "2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects." | |
| "3. Actions, events, behaviors temporal relationships, physical movement changes of the objects." | |
| "4. background environment, light, style and atmosphere." | |
| "5. camera angles, movements, and transitions used in the video:<|eot_id|>\n\n" | |
| "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>" | |
| "<|start_header_id|>assistant<|end_header_id|>\n\n" | |
| ), | |
| "crop_start": 103, | |
| "image_emb_start": 5, | |
| "image_emb_end": 581, | |
| "image_emb_len": 576, | |
| "double_return_token_id": 271, | |
| } | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| r""" | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
| must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
| `num_inference_steps` and `sigmas` must be `None`. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
| `num_inference_steps` and `timesteps` must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents | |
| def retrieve_latents( | |
| encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | |
| ): | |
| if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
| return encoder_output.latent_dist.sample(generator) | |
| elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
| return encoder_output.latent_dist.mode() | |
| elif hasattr(encoder_output, "latents"): | |
| return encoder_output.latents | |
| else: | |
| raise AttributeError("Could not access latents of provided encoder_output") | |
| class HunyuanVideoImageToVideoPipeline(DiffusionPipeline, HunyuanVideoLoraLoaderMixin): | |
| r""" | |
| Pipeline for image-to-video generation using HunyuanVideo. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
| implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
| Args: | |
| text_encoder ([`LlavaForConditionalGeneration`]): | |
| [Llava Llama3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). | |
| tokenizer (`LlamaTokenizer`): | |
| Tokenizer from [Llava Llama3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). | |
| transformer ([`HunyuanVideoTransformer3DModel`]): | |
| Conditional Transformer to denoise the encoded image latents. | |
| scheduler ([`FlowMatchEulerDiscreteScheduler`]): | |
| A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
| vae ([`AutoencoderKLHunyuanVideo`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations. | |
| text_encoder_2 ([`CLIPTextModel`]): | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
| the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
| tokenizer_2 (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). | |
| """ | |
| model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" | |
| _callback_tensor_inputs = ["latents", "prompt_embeds"] | |
| def __init__( | |
| self, | |
| text_encoder: LlavaForConditionalGeneration, | |
| tokenizer: LlamaTokenizerFast, | |
| transformer: HunyuanVideoTransformer3DModel, | |
| vae: AutoencoderKLHunyuanVideo, | |
| scheduler: FlowMatchEulerDiscreteScheduler, | |
| text_encoder_2: CLIPTextModel, | |
| tokenizer_2: CLIPTokenizer, | |
| image_processor: CLIPImageProcessor, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| text_encoder_2=text_encoder_2, | |
| tokenizer_2=tokenizer_2, | |
| image_processor=image_processor, | |
| ) | |
| self.vae_scaling_factor = self.vae.config.scaling_factor if getattr(self, "vae", None) else 0.476986 | |
| self.vae_scale_factor_temporal = self.vae.temporal_compression_ratio if getattr(self, "vae", None) else 4 | |
| self.vae_scale_factor_spatial = self.vae.spatial_compression_ratio if getattr(self, "vae", None) else 8 | |
| self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial) | |
| def _get_llama_prompt_embeds( | |
| self, | |
| image: torch.Tensor, | |
| prompt: Union[str, List[str]], | |
| prompt_template: Dict[str, Any], | |
| num_videos_per_prompt: int = 1, | |
| device: Optional[torch.device] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| max_sequence_length: int = 256, | |
| num_hidden_layers_to_skip: int = 2, | |
| image_embed_interleave: int = 2, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| device = device or self._execution_device | |
| dtype = dtype or self.text_encoder.dtype | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| prompt = [prompt_template["template"].format(p) for p in prompt] | |
| crop_start = prompt_template.get("crop_start", None) | |
| if crop_start is None: | |
| prompt_template_input = self.tokenizer( | |
| prompt_template["template"], | |
| padding="max_length", | |
| return_tensors="pt", | |
| return_length=False, | |
| return_overflowing_tokens=False, | |
| return_attention_mask=False, | |
| ) | |
| crop_start = prompt_template_input["input_ids"].shape[-1] | |
| # Remove <|start_header_id|>, <|end_header_id|>, assistant, <|eot_id|>, and placeholder {} | |
| crop_start -= 5 | |
| max_sequence_length += crop_start | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| max_length=max_sequence_length, | |
| padding="max_length", | |
| truncation=True, | |
| return_tensors="pt", | |
| return_length=False, | |
| return_overflowing_tokens=False, | |
| return_attention_mask=True, | |
| ) | |
| text_input_ids = text_inputs.input_ids.to(device=device) | |
| prompt_attention_mask = text_inputs.attention_mask.to(device=device) | |
| image_embeds = self.image_processor(image, return_tensors="pt").pixel_values.to(device) | |
| prompt_embeds = self.text_encoder( | |
| input_ids=text_input_ids, | |
| attention_mask=prompt_attention_mask, | |
| pixel_values=image_embeds, | |
| output_hidden_states=True, | |
| ).hidden_states[-(num_hidden_layers_to_skip + 1)] | |
| prompt_embeds = prompt_embeds.to(dtype=dtype) | |
| image_emb_len = prompt_template.get("image_emb_len", 576) | |
| image_emb_start = prompt_template.get("image_emb_start", 5) | |
| image_emb_end = prompt_template.get("image_emb_end", 581) | |
| double_return_token_id = prompt_template.get("double_return_token_id", 271) | |
| if crop_start is not None and crop_start > 0: | |
| text_crop_start = crop_start - 1 + image_emb_len | |
| batch_indices, last_double_return_token_indices = torch.where(text_input_ids == double_return_token_id) | |
| if last_double_return_token_indices.shape[0] == 3: | |
| # in case the prompt is too long | |
| last_double_return_token_indices = torch.cat( | |
| (last_double_return_token_indices, torch.tensor([text_input_ids.shape[-1]])) | |
| ) | |
| batch_indices = torch.cat((batch_indices, torch.tensor([0]))) | |
| last_double_return_token_indices = last_double_return_token_indices.reshape(text_input_ids.shape[0], -1)[ | |
| :, -1 | |
| ] | |
| batch_indices = batch_indices.reshape(text_input_ids.shape[0], -1)[:, -1] | |
| assistant_crop_start = last_double_return_token_indices - 1 + image_emb_len - 4 | |
| assistant_crop_end = last_double_return_token_indices - 1 + image_emb_len | |
| attention_mask_assistant_crop_start = last_double_return_token_indices - 4 | |
| attention_mask_assistant_crop_end = last_double_return_token_indices | |
| prompt_embed_list = [] | |
| prompt_attention_mask_list = [] | |
| image_embed_list = [] | |
| image_attention_mask_list = [] | |
| for i in range(text_input_ids.shape[0]): | |
| prompt_embed_list.append( | |
| torch.cat( | |
| [ | |
| prompt_embeds[i, text_crop_start : assistant_crop_start[i].item()], | |
| prompt_embeds[i, assistant_crop_end[i].item() :], | |
| ] | |
| ) | |
| ) | |
| prompt_attention_mask_list.append( | |
| torch.cat( | |
| [ | |
| prompt_attention_mask[i, crop_start : attention_mask_assistant_crop_start[i].item()], | |
| prompt_attention_mask[i, attention_mask_assistant_crop_end[i].item() :], | |
| ] | |
| ) | |
| ) | |
| image_embed_list.append(prompt_embeds[i, image_emb_start:image_emb_end]) | |
| image_attention_mask_list.append( | |
| torch.ones(image_embed_list[-1].shape[0]).to(prompt_embeds.device).to(prompt_attention_mask.dtype) | |
| ) | |
| prompt_embed_list = torch.stack(prompt_embed_list) | |
| prompt_attention_mask_list = torch.stack(prompt_attention_mask_list) | |
| image_embed_list = torch.stack(image_embed_list) | |
| image_attention_mask_list = torch.stack(image_attention_mask_list) | |
| if 0 < image_embed_interleave < 6: | |
| image_embed_list = image_embed_list[:, ::image_embed_interleave, :] | |
| image_attention_mask_list = image_attention_mask_list[:, ::image_embed_interleave] | |
| if not ( | |
| prompt_embed_list.shape[0] == prompt_attention_mask_list.shape[0] | |
| and image_embed_list.shape[0] == image_attention_mask_list.shape[0] | |
| ): | |
| raise ValueError( | |
| "Input tensors have mismatched batch dimensions." | |
| ) | |
| prompt_embeds = torch.cat([image_embed_list, prompt_embed_list], dim=1) | |
| prompt_attention_mask = torch.cat([image_attention_mask_list, prompt_attention_mask_list], dim=1) | |
| return prompt_embeds, prompt_attention_mask | |
| def _get_clip_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]], | |
| num_videos_per_prompt: int = 1, | |
| device: Optional[torch.device] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| max_sequence_length: int = 77, | |
| ) -> torch.Tensor: | |
| device = device or self._execution_device | |
| dtype = dtype or self.text_encoder_2.dtype | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| text_inputs = self.tokenizer_2( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_sequence_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1]) | |
| # logger.warning( | |
| # "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| # f" {max_sequence_length} tokens: {removed_text}" | |
| # ) | |
| prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False).pooler_output | |
| return prompt_embeds | |
| def encode_prompt( | |
| self, | |
| image: torch.Tensor, | |
| prompt: Union[str, List[str]], | |
| prompt_condition: Union[str, List[str], None] = None, | |
| prompt_2: Union[str, List[str]] = None, | |
| prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE, | |
| num_videos_per_prompt: int = 1, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| prompt_embeds_condition: Optional[torch.Tensor] = None, | |
| pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| prompt_attention_mask: Optional[torch.Tensor] = None, | |
| prompt_attention_mask_condition: Optional[torch.Tensor] = None, | |
| device: Optional[torch.device] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| max_sequence_length: int = 256, | |
| image_embed_interleave: int = 2, | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
| if prompt_embeds is None: | |
| prompt_embeds, prompt_attention_mask = self._get_llama_prompt_embeds( | |
| image, | |
| prompt, | |
| prompt_template, | |
| num_videos_per_prompt, | |
| device=device, | |
| dtype=dtype, | |
| max_sequence_length=max_sequence_length, | |
| image_embed_interleave=image_embed_interleave, | |
| ) | |
| if prompt_condition is not None and (prompt_embeds_condition is None or prompt_attention_mask_condition is None): | |
| prompt_embeds_condition, prompt_attention_mask_condition = self._get_llama_prompt_embeds( | |
| image, | |
| prompt_condition, | |
| prompt_template, | |
| num_videos_per_prompt, | |
| device=device, | |
| dtype=dtype, | |
| max_sequence_length=max_sequence_length, | |
| image_embed_interleave=image_embed_interleave, | |
| ) | |
| else: | |
| prompt_embeds_condition = prompt_embeds_condition | |
| prompt_attention_mask_condition = prompt_attention_mask_condition | |
| if pooled_prompt_embeds is None: | |
| if prompt_2 is None: | |
| prompt_2 = prompt | |
| pooled_prompt_embeds = self._get_clip_prompt_embeds( | |
| prompt, | |
| num_videos_per_prompt, | |
| device=device, | |
| dtype=dtype, | |
| max_sequence_length=77, | |
| ) | |
| return prompt_embeds, prompt_embeds_condition, pooled_prompt_embeds, prompt_attention_mask, prompt_attention_mask_condition | |
| def check_inputs( | |
| self, | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| prompt_embeds=None, | |
| callback_on_step_end_tensor_inputs=None, | |
| prompt_template=None, | |
| true_cfg_scale=1.0, | |
| guidance_scale=1.0, | |
| ): | |
| if height % 16 != 0 or width % 16 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.") | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt_2 is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): | |
| raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") | |
| if prompt_template is not None: | |
| if not isinstance(prompt_template, dict): | |
| raise ValueError(f"`prompt_template` has to be of type `dict` but is {type(prompt_template)}") | |
| if "template" not in prompt_template: | |
| raise ValueError( | |
| f"`prompt_template` has to contain a key `template` but only found {prompt_template.keys()}" | |
| ) | |
| if true_cfg_scale > 1.0 and guidance_scale > 1.0: | |
| logger.warning( | |
| "Both `true_cfg_scale` and `guidance_scale` are greater than 1.0. This will result in both " | |
| "classifier-free guidance and embedded-guidance to be applied. This is not recommended " | |
| "as it may lead to higher memory usage, slower inference and potentially worse results." | |
| ) | |
| def prepare_latents( | |
| self, | |
| image: torch.Tensor, | |
| batch_size: int, | |
| num_channels_latents: int = 32, | |
| height: int = 720, | |
| width: int = 1280, | |
| num_frames: int = 129, | |
| dtype: Optional[torch.dtype] = None, | |
| device: Optional[torch.device] = None, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| image_condition_type: str = "latent_concat", | |
| ) -> torch.Tensor: | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1 | |
| latent_height, latent_width = height // self.vae_scale_factor_spatial, width // self.vae_scale_factor_spatial | |
| shape = (batch_size, num_channels_latents, num_latent_frames, latent_height, latent_width) | |
| image = image.unsqueeze(2) # [B, C, 1, H, W] | |
| if isinstance(generator, list): | |
| image_latents = [ | |
| retrieve_latents(self.vae.encode(image[i].unsqueeze(0)), generator[i], "argmax") | |
| for i in range(batch_size) | |
| ] | |
| else: | |
| image_latents = [retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator, "argmax") for img in image] | |
| image_latents = torch.cat(image_latents, dim=0).to(dtype) * self.vae_scaling_factor | |
| image_latents = image_latents.repeat(1, 1, num_latent_frames, 1, 1) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| latents = latents.to(device=device, dtype=dtype) | |
| t = torch.tensor([0.999]).to(device=device) | |
| latents = latents * t + image_latents * (1 - t) | |
| if image_condition_type == "token_replace": | |
| image_latents = image_latents[:, :, :1] | |
| return latents, image_latents | |
| def enable_vae_slicing(self): | |
| r""" | |
| Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
| compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
| """ | |
| self.vae.enable_slicing() | |
| def disable_vae_slicing(self): | |
| r""" | |
| Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_slicing() | |
| def enable_vae_tiling(self): | |
| r""" | |
| Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
| compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
| processing larger images. | |
| """ | |
| self.vae.enable_tiling() | |
| def disable_vae_tiling(self): | |
| r""" | |
| Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_tiling() | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def attention_kwargs(self): | |
| return self._attention_kwargs | |
| def current_timestep(self): | |
| return self._current_timestep | |
| def interrupt(self): | |
| return self._interrupt | |
| def __call__( | |
| self, | |
| image: PIL.Image.Image, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_condition: Union[str, List[str], None] = None, | |
| prompt_2: Union[str, List[str]] = None, | |
| negative_prompt: Union[str, List[str]] = None, | |
| negative_prompt_2: Union[str, List[str]] = None, | |
| height: int = 720, | |
| width: int = 1280, | |
| num_frames: int = 129, | |
| num_inference_steps: int = 50, | |
| sigmas: List[float] = None, | |
| true_cfg_scale: float = 1.0, | |
| guidance_scale: float = 1.0, | |
| num_videos_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| prompt_embeds_condition: Optional[torch.Tensor] = None, | |
| pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| prompt_attention_mask: Optional[torch.Tensor] = None, | |
| prompt_attention_mask_condition: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_attention_mask: Optional[torch.Tensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[ | |
| Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | |
| ] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE, | |
| max_sequence_length: int = 256, | |
| image_embed_interleave: Optional[int] = None, | |
| frame_gap: Union[int, None] = None, | |
| mixup: bool = False, | |
| mixup_num_imgs: Union[int, None] = None, | |
| ): | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| will be used instead. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is | |
| not greater than `1`). | |
| negative_prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
| `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders. | |
| height (`int`, defaults to `720`): | |
| The height in pixels of the generated image. | |
| width (`int`, defaults to `1280`): | |
| The width in pixels of the generated image. | |
| num_frames (`int`, defaults to `129`): | |
| The number of frames in the generated video. | |
| num_inference_steps (`int`, defaults to `50`): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in | |
| their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed | |
| will be used. | |
| true_cfg_scale (`float`, *optional*, defaults to 1.0): | |
| When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance. | |
| guidance_scale (`float`, defaults to `1.0`): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. Note that the only available HunyuanVideo model is | |
| CFG-distilled, which means that traditional guidance between unconditional and conditional latent is | |
| not applied. | |
| num_videos_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| latents (`torch.Tensor`, *optional*): | |
| Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor is generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
| provided, text embeddings are generated from the `prompt` input argument. | |
| pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
| input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`HunyuanVideoPipelineOutput`] instead of a plain tuple. | |
| attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| clip_skip (`int`, *optional*): | |
| Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
| the output of the pre-final layer will be used for computing the prompt embeddings. | |
| callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): | |
| A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of | |
| each denoising step during the inference. with the following arguments: `callback_on_step_end(self: | |
| DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a | |
| list of all tensors as specified by `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| Examples: | |
| Returns: | |
| [`~HunyuanVideoPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`HunyuanVideoPipelineOutput`] is returned, otherwise a `tuple` is returned | |
| where the first element is a list with the generated images and the second element is a list of `bool`s | |
| indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. | |
| """ | |
| if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
| callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| prompt_embeds, | |
| callback_on_step_end_tensor_inputs, | |
| prompt_template, | |
| true_cfg_scale, | |
| guidance_scale, | |
| ) | |
| image_condition_type = self.transformer.config.image_condition_type | |
| has_neg_prompt = negative_prompt is not None or ( | |
| negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None | |
| ) | |
| do_true_cfg = true_cfg_scale > 1 and has_neg_prompt | |
| image_embed_interleave = ( | |
| image_embed_interleave | |
| if image_embed_interleave is not None | |
| else ( | |
| 2 if image_condition_type == "latent_concat" else 4 if image_condition_type == "token_replace" else 1 | |
| ) | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._attention_kwargs = attention_kwargs | |
| self._current_timestep = None | |
| self._interrupt = False | |
| device = self._execution_device | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| # 3. Prepare latent variables | |
| vae_dtype = self.vae.dtype | |
| image_tensor = self.video_processor.preprocess(image, height, width).to(device, vae_dtype) | |
| if image_condition_type == "latent_concat": | |
| num_channels_latents = (self.transformer.config.in_channels - 1) // 2 | |
| elif image_condition_type == "token_replace": | |
| num_channels_latents = self.transformer.config.in_channels | |
| latents, image_latents = self.prepare_latents( | |
| image_tensor, | |
| batch_size * num_videos_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| num_frames if not mixup else num_frames + 4 * mixup_num_imgs, | |
| torch.float32, | |
| device, | |
| generator, | |
| latents, | |
| image_condition_type, | |
| ) | |
| if image_condition_type == "latent_concat": | |
| image_latents[:, :, 1:] = 0 | |
| mask = image_latents.new_ones(image_latents.shape[0], 1, *image_latents.shape[2:]) | |
| mask[:, :, 1:] = 0 | |
| # 4. Encode input prompt | |
| transformer_dtype = self.transformer.dtype | |
| (prompt_embeds, | |
| prompt_embeds_condition, | |
| pooled_prompt_embeds, | |
| prompt_attention_mask, | |
| prompt_attention_mask_condition) = self.encode_prompt( | |
| image=image, | |
| prompt=prompt, | |
| prompt_condition=prompt_condition, | |
| prompt_2=prompt_2, | |
| prompt_template=prompt_template, | |
| num_videos_per_prompt=num_videos_per_prompt, | |
| prompt_embeds=prompt_embeds, | |
| prompt_embeds_condition=prompt_embeds_condition, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| prompt_attention_mask=prompt_attention_mask, | |
| prompt_attention_mask_condition=prompt_attention_mask_condition, | |
| device=device, | |
| max_sequence_length=max_sequence_length, | |
| image_embed_interleave=image_embed_interleave, | |
| ) | |
| prompt_embeds = prompt_embeds.to(transformer_dtype) | |
| prompt_attention_mask = prompt_attention_mask.to(transformer_dtype) | |
| pooled_prompt_embeds = pooled_prompt_embeds.to(transformer_dtype) | |
| if do_true_cfg: | |
| black_image = PIL.Image.new("RGB", (width, height), 0) | |
| negative_prompt_embeds, negative_pooled_prompt_embeds, negative_prompt_attention_mask = self.encode_prompt( | |
| image=black_image, | |
| prompt=negative_prompt, | |
| prompt_2=negative_prompt_2, | |
| prompt_template=prompt_template, | |
| num_videos_per_prompt=num_videos_per_prompt, | |
| prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| prompt_attention_mask=negative_prompt_attention_mask, | |
| device=device, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype) | |
| negative_prompt_attention_mask = negative_prompt_attention_mask.to(transformer_dtype) | |
| negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.to(transformer_dtype) | |
| # 5. Prepare timesteps | |
| sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas | |
| timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, sigmas=sigmas) | |
| # 6. Prepare guidance condition | |
| guidance = None | |
| if self.transformer.config.guidance_embeds: | |
| guidance = ( | |
| torch.tensor([guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device) * 1000.0 | |
| ) | |
| # 7. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| self._num_timesteps = len(timesteps) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| self._current_timestep = t | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
| if image_condition_type == "latent_concat": | |
| latent_model_input = torch.cat([latents, image_latents, mask], dim=1).to(transformer_dtype) | |
| elif image_condition_type == "token_replace": | |
| latent_model_input = torch.cat([image_latents, latents[:, :, 1:]], dim=2).to(transformer_dtype) | |
| noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| timestep=timestep, | |
| encoder_hidden_states=prompt_embeds, | |
| encoder_hidden_states_condition=prompt_embeds_condition, | |
| encoder_attention_mask=prompt_attention_mask, | |
| encoder_attention_mask_condition=prompt_attention_mask_condition, | |
| pooled_projections=pooled_prompt_embeds, | |
| guidance=guidance, | |
| attention_kwargs=attention_kwargs, | |
| return_dict=False, | |
| frame_gap=int(frame_gap / 4) if frame_gap is not None else frame_gap, | |
| )[0] | |
| if do_true_cfg: | |
| neg_noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| timestep=timestep, | |
| encoder_hidden_states=negative_prompt_embeds, | |
| encoder_attention_mask=negative_prompt_attention_mask, | |
| pooled_projections=negative_pooled_prompt_embeds, | |
| guidance=guidance, | |
| attention_kwargs=attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| if image_condition_type == "latent_concat": | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| elif image_condition_type == "token_replace": | |
| latents = latents = self.scheduler.step( | |
| noise_pred[:, :, 1:], t, latents[:, :, 1:], return_dict=False | |
| )[0] | |
| latents = torch.cat([image_latents, latents], dim=2) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| self._current_timestep = None | |
| if not mixup: | |
| generated_img_frame_start = image_latents.shape[2] | |
| latents = latents[:, :, generated_img_frame_start:] | |
| if not output_type == "latent": | |
| latents = latents.to(self.vae.dtype) / self.vae_scaling_factor | |
| video = self.vae.decode(latents, return_dict=False)[0] | |
| if image_condition_type == "latent_concat": | |
| video = video[:, :, 4:, :, :] | |
| video = self.video_processor.postprocess_video(video, output_type=output_type) | |
| if mixup: | |
| single_generated_decoded = self.vae.decode(latents[:, :, -1:], return_dict=False)[0] | |
| single_generated_decoded = self.video_processor.postprocess_video(single_generated_decoded, output_type=output_type) | |
| video = torch.cat([single_generated_decoded, video], dim=1) | |
| else: | |
| if image_condition_type == "latent_concat": | |
| video = latents[:, :, 1:, :, :] | |
| else: | |
| video = latents | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (video,) | |
| return HunyuanVideoPipelineOutput(frames=video) |