KumaGLM-Lite / app.py
KumaTea's picture
sync with main version
2a4f313
from fix_int8 import fix_pytorch_int8
fix_pytorch_int8()
# import subprocess
# result = subprocess.run(['git', 'clone', 'https://huggingface.co/KumaTea/twitter-int8', 'model'], capture_output=True, text=True)
# print(result.stdout)
# Credit:
# https://huggingface.co/spaces/ljsabc/Fujisaki/blob/main/app.py
import torch
import logging
import gradio as gr
from transformers import AutoTokenizer, GenerationConfig, AutoModel
gr_title = """<h1 align="center">KumaGLM Lite</h1>
<h3 align='center'>这是<a href="https://huggingface.co/spaces/KumaTea/KumaGLM" target="_blank">另一个</a> AI Kuma,你可以与他聊天,或者直接在文本框按下Enter</h3>
<p align='center'>采用 INT4 量化,速度很慢,仅作备用</p>
<p align='center'>GitHub Repo: <a class="github-button" href="https://github.com/KumaTea/ChatGLM" aria-label="Star KumaTea/ChatGLM on GitHub">KumaTea/ChatGLM</a></p>
<script async defer src="https://buttons.github.io/buttons.js"></script>
"""
gr_footer = """<p align='center'>
本项目基于
<a href='https://github.com/ljsabc/Fujisaki' target='_blank'>ljsabc/Fujisaki</a>
,模型采用
<a href='https://huggingface.co/THUDM/chatglm-6b' target='_blank'>THUDM/chatglm-6b</a>
</p>
<p align='center'>
<em>每天起床第一句!</em>
</p>"""
default_start = ["你是谁?", "我是 kuma"]
# device = torch.device('cpu')
# torch.cuda.current_device = lambda : device
logging.basicConfig(
format='%(asctime)s %(levelname)-8s %(message)s',
level=logging.INFO,
datefmt='%m/%d %H:%M:%S')
model = AutoModel.from_pretrained(
"KumaTea/twitter-int4",
trust_remote_code=True,
revision="e2aecb2"
).float() # .to(device)
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True, revision="4de8efe")
# dump a log to ensure everything works well
# print(model.peft_config)
# We have to use full precision, as some tokens are >65535
model.eval()
# print(model)
torch.set_default_tensor_type(torch.FloatTensor)
def evaluate(context, temperature, top_p, top_k=None):
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
# top_k=top_k,
#repetition_penalty=1.1,
num_beams=1,
do_sample=True,
)
with torch.no_grad():
# input_text = f"Context: {context}Answer: "
input_text = '||'.join(default_start) + '||'
input_text += context + '||'
logging.info('[API] Incoming request: ' + input_text)
ids = tokenizer([input_text], return_tensors="pt")
inputs = ids.to("cpu")
out = model.generate(
**inputs,
max_length=224,
generation_config=generation_config
)
out = out.tolist()[0]
decoder_output = tokenizer.decode(out)
# out_text = decoder_output.split("Answer: ")[1]
out_text = decoder_output
logging.info('[API] Result: ' + out_text)
return out_text
def evaluate_stream(msg, history, temperature, top_p):
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
#repetition_penalty=1.1,
num_beams=1,
do_sample=True,
)
if not msg:
msg = '……'
history.append([msg, ""])
context = '||'.join(default_start) + '||'
if len(history) > 4:
history.pop(0)
for j in range(len(history)):
history[j][0] = history[j][0].replace("<br>", "")
# concatenate context
for h in history[:-1]:
context += h[0] + "||" + h[1] + "||"
context += history[-1][0] + "||"
context = context.replace(r'<br>', '')
# TODO: Avoid the tokens are too long.
CUTOFF = 224
while len(tokenizer.encode(context)) > CUTOFF:
# save 15 token size for the answer
context = context[15:]
h = []
logging.info('[UI] Incoming request: ' + context)
for response, h in model.stream_chat(tokenizer, context, h, max_length=CUTOFF, top_p=top_p, temperature=temperature):
history[-1][1] = response
yield history, ""
with gr.Blocks() as demo:
gr.HTML(gr_title)
# state = gr.State()
with gr.Row():
with gr.Column(scale=2):
temp = gr.components.Slider(minimum=0, maximum=1.1, value=0.5, label="Temperature",
info="温度参数,越高的温度生成的内容越丰富,但是有可能出现语法问题。小的温度也能帮助生成更相关的回答。")
top_p = gr.components.Slider(minimum=0.5, maximum=1.0, value=0.8, label="Top-p",
info="top-p参数,只输出前p>top-p的文字,越大生成的内容越丰富,但也可能出现语法问题。数字越小似乎上下文的衔接性越好。")
#code = gr.Textbox(label="temp_output", info="解码器输出")
#top_k = gr.components.Slider(minimum=1, maximum=200, step=1, value=25, label="Top k",
# info="top-k参数,下一个输出的文字会从top-k个文字中进行选择,越大生成的内容越丰富,但也可能出现语法问题。数字越小似乎上下文的衔接性越好。")
with gr.Column(scale=3):
chatbot = gr.Chatbot(label="聊天框", info="")
msg = gr.Textbox(label="输入框", placeholder="最近过得怎么样?",
info="输入你的内容,按 [Enter] 发送。什么都不填经常会出错。")
clear = gr.Button("清除聊天")
api_handler = gr.Button("API", visible=False)
textbox_for_api = gr.Textbox(visible=False)
msg.submit(evaluate_stream, [msg, chatbot, temp, top_p], [chatbot, msg])
clear.click(lambda: None, None, chatbot, queue=False)
api_handler.click(evaluate, [textbox_for_api, temp, top_p], [textbox_for_api], api_name='chat')
gr.HTML(gr_footer)
demo.queue()
demo.launch(debug=False)