AsianMOM / app.py
Kuberwastaken's picture
Went to an older version of Numpy
8720a33
raw
history blame
6.16 kB
import os
import gradio as gr
import torch
import cv2
from PIL import Image
import numpy as np
from transformers import pipeline, AutoProcessor, AutoModelForVision2Seq
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
import time
import nltk
import io
from transformers import BlipProcessor, BlipForConditionalGeneration
# Set environment variables
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def initialize_vision_model():
# Using BLIP for image captioning - lightweight but effective
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
return {
"processor": processor,
"model": model
}
def analyze_image(image, vision_components):
processor = vision_components["processor"]
model = vision_components["model"]
# Convert to RGB if needed
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
inputs = processor(image, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(**inputs, max_length=30)
caption = processor.decode(outputs[0], skip_special_tokens=True)
return caption
def initialize_llm():
model_id = "meta-llama/Llama-3.2-1B-Instruct"
hf_token = os.environ.get("HF_TOKEN")
# Load and patch config
config = AutoConfig.from_pretrained(model_id, token=hf_token)
if hasattr(config, "rope_scaling"):
rope_scaling = config.rope_scaling
if isinstance(rope_scaling, dict):
config.rope_scaling = {
"type": rope_scaling.get("type", "linear"),
"factor": rope_scaling.get("factor", 1.0)
}
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
config=config,
torch_dtype=torch.bfloat16,
device_map="auto",
token=hf_token
)
return {
"model": model,
"tokenizer": tokenizer
}
def generate_roast(caption, llm_components):
model = llm_components["model"]
tokenizer = llm_components["tokenizer"]
prompt = f"""[INST] You are AsianMOM, a stereotypical Asian mother who always has high expectations. \nYou just observed your child doing this: \"{caption}\"\n \nRespond with a short, humorous roast (maximum 2-3 sentences) in the style of a stereotypical Asian mother. \nInclude at least one of these elements:\n- Comparison to more successful relatives/cousins\n- High expectations about academic success\n- Mild threats about using slippers\n- Questioning life choices\n- Asking when they'll get married or have kids\n- Commenting on appearance\n- Saying \"back in my day\" and describing hardship\n\nBe funny but not hurtful. Keep it brief. [/INST]"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=300,
temperature=0.7,
top_p=0.9,
do_sample=True
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract just the response part, not the prompt
response = response.split("[/INST]")[1].strip()
return response
def initialize_tts_model():
from melo.api import TTS
device = 'cuda' if torch.cuda.is_available() else 'cpu'
tts_model = TTS(language='EN', device=device)
speaker_ids = tts_model.hps.data.spk2id
return tts_model, speaker_ids
def text_to_speech(text, tts_model, speaker_id='EN-US', speed=1.0):
bio = io.BytesIO()
tts_model.tts_to_file(text, tts_model.hps.data.spk2id[speaker_id], bio, speed=speed, format='wav')
bio.seek(0)
return (24000, bio.read())
def process_frame(image, vision_components, llm_components, tts_model, speaker_id='EN-US'):
caption = analyze_image(image, vision_components)
roast = generate_roast(caption, llm_components)
audio = text_to_speech(roast, tts_model, speaker_id)
return caption, roast, audio
def setup_processing_chain(video_feed, analysis_output, roast_output, audio_output):
vision_components = initialize_vision_model()
llm_components = initialize_llm()
tts_model, speaker_ids = initialize_tts_model()
last_process_time = time.time() - 10
processing_interval = 5
def process_webcam(image):
nonlocal last_process_time
current_time = time.time()
if current_time - last_process_time >= processing_interval and image is not None:
last_process_time = current_time
caption, roast, audio = process_frame(
image,
vision_components,
llm_components,
tts_model,
'EN-US' # Default accent
)
return image, caption, roast, audio
return image, None, None, None
video_feed.change(
process_webcam,
inputs=[video_feed],
outputs=[video_feed, analysis_output, roast_output, audio_output]
)
def create_app():
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.Markdown("# AsianMOM: Asian Mother Observer & Mocker")
gr.Markdown("### Camera captures what you're doing and your Asian mom responds appropriately")
with gr.Row():
with gr.Column():
video_feed = gr.Image(sources=["webcam"], streaming=True, label="Camera Feed")
with gr.Column():
analysis_output = gr.Textbox(label="What AsianMOM Sees", lines=2)
roast_output = gr.Textbox(label="AsianMOM's Thoughts", lines=4)
audio_output = gr.Audio(label="AsianMOM Says", autoplay=True)
# Setup the processing chain
setup_processing_chain(video_feed, analysis_output, roast_output, audio_output)
return app
if __name__ == "__main__":
os.system('python -m unidic download')
nltk.download('averaged_perceptron_tagger_eng')
app = create_app()
app.launch()