File size: 6,151 Bytes
e94ed44
 
 
 
 
 
 
c42af7b
e94ed44
8c1e484
 
 
e94ed44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c42af7b
 
 
 
 
 
 
 
 
 
 
 
 
e94ed44
 
c42af7b
e94ed44
c42af7b
 
e94ed44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c1e484
 
 
 
e94ed44
8c1e484
 
 
 
 
e94ed44
8c1e484
e94ed44
 
8c1e484
e94ed44
 
 
 
 
8c1e484
 
 
e94ed44
 
 
 
 
 
8c1e484
 
 
 
 
e94ed44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70a7738
e94ed44
 
 
 
 
 
 
 
 
 
 
 
8c1e484
 
e94ed44
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
import gradio as gr
import torch
import cv2
from PIL import Image
import numpy as np
from transformers import pipeline, AutoProcessor, AutoModelForVision2Seq
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
import time
import nltk
from melo.api import TTS
import io

from transformers import BlipProcessor, BlipForConditionalGeneration

# Set environment variables
os.environ["TOKENIZERS_PARALLELISM"] = "false"

def initialize_vision_model():
    # Using BLIP for image captioning - lightweight but effective
    processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
    model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
    
    return {
        "processor": processor,
        "model": model
    }

def analyze_image(image, vision_components):
    processor = vision_components["processor"]
    model = vision_components["model"]
    
    # Convert to RGB if needed
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    
    inputs = processor(image, return_tensors="pt")
    
    with torch.no_grad():
        outputs = model.generate(**inputs, max_length=30)
    
    caption = processor.decode(outputs[0], skip_special_tokens=True)
    return caption

def initialize_llm():
    model_id = "meta-llama/Llama-3.2-1B-Instruct"
    hf_token = os.environ.get("HF_TOKEN")

    # Load and patch config
    config = AutoConfig.from_pretrained(model_id, token=hf_token)
    if hasattr(config, "rope_scaling"):
        rope_scaling = config.rope_scaling
        if isinstance(rope_scaling, dict):
            config.rope_scaling = {
                "type": rope_scaling.get("type", "linear"),
                "factor": rope_scaling.get("factor", 1.0)
            }

    tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        config=config,
        torch_dtype=torch.bfloat16,
        device_map="auto",
        token=hf_token
    )
    return {
        "model": model,
        "tokenizer": tokenizer
    }

def generate_roast(caption, llm_components):
    model = llm_components["model"]
    tokenizer = llm_components["tokenizer"]
    
    prompt = f"""[INST] You are AsianMOM, a stereotypical Asian mother who always has high expectations. \nYou just observed your child doing this: \"{caption}\"\n    \nRespond with a short, humorous roast (maximum 2-3 sentences) in the style of a stereotypical Asian mother. \nInclude at least one of these elements:\n- Comparison to more successful relatives/cousins\n- High expectations about academic success\n- Mild threats about using slippers\n- Questioning life choices\n- Asking when they'll get married or have kids\n- Commenting on appearance\n- Saying \"back in my day\" and describing hardship\n\nBe funny but not hurtful. Keep it brief. [/INST]"""

    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_length=300,
            temperature=0.7,
            top_p=0.9,
            do_sample=True
        )
    
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    # Extract just the response part, not the prompt
    response = response.split("[/INST]")[1].strip()
    
    return response

def initialize_tts_model():
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    tts_model = TTS(language='EN', device=device)
    speaker_ids = tts_model.hps.data.spk2id
    return tts_model, speaker_ids

def text_to_speech(text, tts_model, speaker_id='EN-US', speed=1.0):
    bio = io.BytesIO()
    tts_model.tts_to_file(text, tts_model.hps.data.spk2id[speaker_id], bio, speed=speed, format='wav')
    bio.seek(0)
    return (24000, bio.read())

def process_frame(image, vision_components, llm_components, tts_model, speaker_id='EN-US'):
    caption = analyze_image(image, vision_components)
    roast = generate_roast(caption, llm_components)
    audio = text_to_speech(roast, tts_model, speaker_id)
    return caption, roast, audio

def setup_processing_chain(video_feed, analysis_output, roast_output, audio_output):
    vision_components = initialize_vision_model()
    llm_components = initialize_llm()
    tts_model, speaker_ids = initialize_tts_model()
    last_process_time = time.time() - 10
    processing_interval = 5
    def process_webcam(image):
        nonlocal last_process_time
        current_time = time.time()
        if current_time - last_process_time >= processing_interval and image is not None:
            last_process_time = current_time
            caption, roast, audio = process_frame(
                image,
                vision_components,
                llm_components,
                tts_model,
                'EN-US'  # Default accent
            )
            return image, caption, roast, audio
        return image, None, None, None
    video_feed.change(
        process_webcam,
        inputs=[video_feed],
        outputs=[video_feed, analysis_output, roast_output, audio_output]
    )

def create_app():
    with gr.Blocks(theme=gr.themes.Soft()) as app:
        gr.Markdown("# AsianMOM: Asian Mother Observer & Mocker")
        gr.Markdown("### Camera captures what you're doing and your Asian mom responds appropriately")
        
        with gr.Row():
            with gr.Column():
                video_feed = gr.Image(sources=["webcam"], streaming=True, label="Camera Feed")
            
            with gr.Column():
                analysis_output = gr.Textbox(label="What AsianMOM Sees", lines=2)
                roast_output = gr.Textbox(label="AsianMOM's Thoughts", lines=4)
                audio_output = gr.Audio(label="AsianMOM Says", autoplay=True)
        
        # Setup the processing chain
        setup_processing_chain(video_feed, analysis_output, roast_output, audio_output)
                
    return app

if __name__ == "__main__":
    os.system('python -m unidic download')
    nltk.download('averaged_perceptron_tagger_eng')
    app = create_app()
    app.launch()