Spaces:
Sleeping
Sleeping
File size: 6,151 Bytes
e94ed44 c42af7b e94ed44 8c1e484 e94ed44 c42af7b e94ed44 c42af7b e94ed44 c42af7b e94ed44 8c1e484 e94ed44 8c1e484 e94ed44 8c1e484 e94ed44 8c1e484 e94ed44 8c1e484 e94ed44 8c1e484 e94ed44 70a7738 e94ed44 8c1e484 e94ed44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import os
import gradio as gr
import torch
import cv2
from PIL import Image
import numpy as np
from transformers import pipeline, AutoProcessor, AutoModelForVision2Seq
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
import time
import nltk
from melo.api import TTS
import io
from transformers import BlipProcessor, BlipForConditionalGeneration
# Set environment variables
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def initialize_vision_model():
# Using BLIP for image captioning - lightweight but effective
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
return {
"processor": processor,
"model": model
}
def analyze_image(image, vision_components):
processor = vision_components["processor"]
model = vision_components["model"]
# Convert to RGB if needed
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
inputs = processor(image, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(**inputs, max_length=30)
caption = processor.decode(outputs[0], skip_special_tokens=True)
return caption
def initialize_llm():
model_id = "meta-llama/Llama-3.2-1B-Instruct"
hf_token = os.environ.get("HF_TOKEN")
# Load and patch config
config = AutoConfig.from_pretrained(model_id, token=hf_token)
if hasattr(config, "rope_scaling"):
rope_scaling = config.rope_scaling
if isinstance(rope_scaling, dict):
config.rope_scaling = {
"type": rope_scaling.get("type", "linear"),
"factor": rope_scaling.get("factor", 1.0)
}
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
config=config,
torch_dtype=torch.bfloat16,
device_map="auto",
token=hf_token
)
return {
"model": model,
"tokenizer": tokenizer
}
def generate_roast(caption, llm_components):
model = llm_components["model"]
tokenizer = llm_components["tokenizer"]
prompt = f"""[INST] You are AsianMOM, a stereotypical Asian mother who always has high expectations. \nYou just observed your child doing this: \"{caption}\"\n \nRespond with a short, humorous roast (maximum 2-3 sentences) in the style of a stereotypical Asian mother. \nInclude at least one of these elements:\n- Comparison to more successful relatives/cousins\n- High expectations about academic success\n- Mild threats about using slippers\n- Questioning life choices\n- Asking when they'll get married or have kids\n- Commenting on appearance\n- Saying \"back in my day\" and describing hardship\n\nBe funny but not hurtful. Keep it brief. [/INST]"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=300,
temperature=0.7,
top_p=0.9,
do_sample=True
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract just the response part, not the prompt
response = response.split("[/INST]")[1].strip()
return response
def initialize_tts_model():
device = 'cuda' if torch.cuda.is_available() else 'cpu'
tts_model = TTS(language='EN', device=device)
speaker_ids = tts_model.hps.data.spk2id
return tts_model, speaker_ids
def text_to_speech(text, tts_model, speaker_id='EN-US', speed=1.0):
bio = io.BytesIO()
tts_model.tts_to_file(text, tts_model.hps.data.spk2id[speaker_id], bio, speed=speed, format='wav')
bio.seek(0)
return (24000, bio.read())
def process_frame(image, vision_components, llm_components, tts_model, speaker_id='EN-US'):
caption = analyze_image(image, vision_components)
roast = generate_roast(caption, llm_components)
audio = text_to_speech(roast, tts_model, speaker_id)
return caption, roast, audio
def setup_processing_chain(video_feed, analysis_output, roast_output, audio_output):
vision_components = initialize_vision_model()
llm_components = initialize_llm()
tts_model, speaker_ids = initialize_tts_model()
last_process_time = time.time() - 10
processing_interval = 5
def process_webcam(image):
nonlocal last_process_time
current_time = time.time()
if current_time - last_process_time >= processing_interval and image is not None:
last_process_time = current_time
caption, roast, audio = process_frame(
image,
vision_components,
llm_components,
tts_model,
'EN-US' # Default accent
)
return image, caption, roast, audio
return image, None, None, None
video_feed.change(
process_webcam,
inputs=[video_feed],
outputs=[video_feed, analysis_output, roast_output, audio_output]
)
def create_app():
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.Markdown("# AsianMOM: Asian Mother Observer & Mocker")
gr.Markdown("### Camera captures what you're doing and your Asian mom responds appropriately")
with gr.Row():
with gr.Column():
video_feed = gr.Image(sources=["webcam"], streaming=True, label="Camera Feed")
with gr.Column():
analysis_output = gr.Textbox(label="What AsianMOM Sees", lines=2)
roast_output = gr.Textbox(label="AsianMOM's Thoughts", lines=4)
audio_output = gr.Audio(label="AsianMOM Says", autoplay=True)
# Setup the processing chain
setup_processing_chain(video_feed, analysis_output, roast_output, audio_output)
return app
if __name__ == "__main__":
os.system('python -m unidic download')
nltk.download('averaged_perceptron_tagger_eng')
app = create_app()
app.launch() |