from langchain_text_splitters import CharacterTextSplitter from langchain_huggingface import HuggingFaceEmbeddings from langchain_chroma import Chroma from langchain.docstore.document import Document import pandas as pd import os import glob # Define a function to perform vectorization for multiple CSV files def vectorize_documents(): embeddings = HuggingFaceEmbeddings() # Directory containing multiple CSV files csv_directory = "Data" # Replace with your folder name csv_files = glob.glob(os.path.join(csv_directory, "*.csv")) # Find all CSV files in the folder documents = [] # Load and concatenate all CSV files for file_path in csv_files: df = pd.read_csv(file_path) for _, row in df.iterrows(): # Combine all columns in the row into a single string row_content = " ".join(row.astype(str)) documents.append(Document(page_content=row_content)) # Splitting the text and creating chunks of these documents text_splitter = CharacterTextSplitter( chunk_size=2000, chunk_overlap=500 ) text_chunks = text_splitter.split_documents(documents) # Process text chunks in batches batch_size = 5000 # Chroma's batch size limit is 5461, set a slightly smaller size for safety for i in range(0, len(text_chunks), batch_size): batch = text_chunks[i:i + batch_size] # Store the batch in Chroma vector DB vectordb = Chroma.from_documents( documents=batch, embedding=embeddings, persist_directory="House_vectordb" ) print("Documents Vectorized and saved in VectorDB") # Expose embeddings if needed embeddings = HuggingFaceEmbeddings() # Main guard to prevent execution on import if __name__ == "__main__": vectorize_documents()