import os import json import sqlite3 from datetime import datetime import streamlit as st from langchain_huggingface import HuggingFaceEmbeddings from langchain_chroma import Chroma from langchain_groq import ChatGroq from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from vectorize_documents import embeddings working_dir = os.path.dirname(os.path.abspath(__file__)) config_data = json.load(open(f"{working_dir}/config.json")) GROQ_API_KEY = config_data["GROQ_API_KEY"] os.environ["GROQ_API_KEY"]= GROQ_API_KEY # Set up the database with check_same_thread=False def setup_db(): conn = sqlite3.connect("chat_history.db", check_same_thread=False) # Ensure thread-safe connection cursor = conn.cursor() cursor.execute(""" CREATE TABLE IF NOT EXISTS chat_histories ( id INTEGER PRIMARY KEY AUTOINCREMENT, username TEXT, timestamp TEXT, day TEXT, user_message TEXT, assistant_response TEXT ) """) conn.commit() return conn # Return the connection # Function to save chat history to SQLite def save_chat_history(conn, username, timestamp, day, user_message, assistant_response): cursor = conn.cursor() cursor.execute(""" INSERT INTO chat_histories (username, timestamp, day, user_message, assistant_response) VALUES (?, ?, ?, ?, ?) """, (username, timestamp, day, user_message, assistant_response)) conn.commit() # Function to set up vectorstore for embeddings def setup_vectorstore(): embeddings = HuggingFaceEmbeddings() vectorstore = Chroma(persist_directory="House_vectordb", embedding_function=embeddings) return vectorstore # Function to set up the chatbot chain def chat_chain(vectorstore): llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0) retriever = vectorstore.as_retriever() memory = ConversationBufferMemory( llm=llm, output_key="answer", memory_key="chat_history", return_messages=True ) chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=retriever, chain_type="stuff", memory=memory, verbose=True, return_source_documents=True ) return chain # Streamlit UI setup st.set_page_config(page_title="House.Ai", page_icon="🤖AI", layout="centered") st.title("🤖 House.Ai") st.subheader("You can ask your general questions and queries to our AI") # Step 1: Initialize the connection and check if the user is already logged in if "conn" not in st.session_state: st.session_state.conn = setup_db() if "username" not in st.session_state: username = st.text_input("Enter your name to proceed:") if username: with st.spinner("Loading chatbot interface... Please wait."): st.session_state.username = username st.session_state.chat_history = [] # Initialize empty chat history in memory st.session_state.vectorstore = setup_vectorstore() st.session_state.conversational_chain = chat_chain(st.session_state.vectorstore) st.success(f"Welcome, {username}! The chatbot interface is ready.") else: username = st.session_state.username # Step 2: Initialize components if not already set if "conversational_chain" not in st.session_state: st.session_state.vectorstore = setup_vectorstore() st.session_state.conversational_chain = chat_chain(st.session_state.vectorstore) # Step 3: Display the chat history in the UI if "username" in st.session_state: st.subheader(f"Hello {username}, start your query below!") # Display chat history (messages exchanged between user and assistant) if st.session_state.chat_history: for message in st.session_state.chat_history: if message['role'] == 'user': with st.chat_message("user"): st.markdown(message["content"]) elif message['role'] == 'assistant': with st.chat_message("assistant"): st.markdown(message["content"]) # Input field for the user to type their message user_input = st.chat_input("Ask AI....") if user_input: with st.spinner("Processing your query... Please wait."): # Save user input to chat history in memory st.session_state.chat_history.append({"role": "user", "content": user_input}) # Display user's message in chatbot (for UI display) with st.chat_message("user"): st.markdown(user_input) # Get assistant's response from the chain with st.chat_message("assistant"): response = st.session_state.conversational_chain({"question": user_input}) assistant_response = response["answer"] st.markdown(assistant_response) # Save assistant's response to chat history in memory st.session_state.chat_history.append({"role": "assistant", "content": assistant_response}) # Save the chat history to the database (SQLite) timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") day = datetime.now().strftime("%A") # Get the day of the week (e.g., Monday) save_chat_history(st.session_state.conn, username, timestamp, day, user_input, assistant_response)