import streamlit as st | |
import requests | |
import google.generativeai as genai | |
import firebase_admin | |
from firebase_admin import credentials, db | |
from PIL import Image | |
import numpy as np | |
import base64 | |
from io import BytesIO | |
from tensorflow.keras.applications import MobileNetV2 | |
from tensorflow.keras.applications.mobilenet_v2 import decode_predictions, preprocess_input | |
# Initialize Firebase | |
if not firebase_admin._apps: | |
cred = credentials.Certificate("firebase_credentials.json") | |
firebase_admin.initialize_app(cred, { | |
'databaseURL': 'https://binsight-beda0-default-rtdb.asia-southeast1.firebasedatabase.app/' | |
}) | |
# Configure Gemini 2.0 Flash (gemini-1.5-flash) | |
genai.configure(api_key="AIzaSyBREh8Uei7uDCbzPaYW2WdalOdjVWcQLAM") # Replace with actual API key | |
# Load MobileNetV2 pre-trained model | |
mobilenet_model = MobileNetV2(weights="imagenet") | |
# Function to classify image | |
def classify_image(image): | |
img = image.resize((224, 224)) | |
img_array = np.array(img) | |
img_array = np.expand_dims(img_array, axis=0) | |
img_array = preprocess_input(img_array) | |
predictions = mobilenet_model.predict(img_array) | |
labels = decode_predictions(predictions, top=5)[0] | |
return {label[1]: round(float(label[2]) * 100, 2) for label in labels} | |
# Function to check if image is a dustbin | |
def is_dustbin_image(classification_results): | |
dustbin_keywords = ["trash", "bin", "garbage", "waste", "dustbin", "ashcan", "recycle", "rubbish"] | |
return any(any(keyword in label.lower() for keyword in dustbin_keywords) for label in classification_results.keys()) | |
# Function to convert image to Base64 | |
def convert_image_to_base64(image): | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") | |
return base64.b64encode(buffered.getvalue()).decode() | |
# Function to generate AI recommendations using Gemini 2.0 Flash | |
def get_genai_response(classification_results, location): | |
try: | |
classification_summary = "\n".join([f"- **{label}:** {score}%" for label, score in classification_results.items()]) | |
location_summary = f""" | |
- **Latitude:** {location[0] if location[0] else 'N/A'} | |
- **Longitude:** {location[1] if location[1] else 'N/A'} | |
- **Address:** {location[2] if location[2] else 'N/A'} | |
""" | |
prompt = f""" | |
### You are an environmental expert. Analyze the following waste classification: | |
**1. Image Classification Results:** | |
{classification_summary} | |
**2. Location Details:** | |
{location_summary} | |
### Required Analysis: | |
- Describe the waste detected in the image. | |
- Potential health & environmental risks. | |
- Recommended disposal methods & precautions. | |
- Eco-friendly alternatives. | |
""" | |
model = genai.GenerativeModel("gemini-1.5-flash") | |
response = model.generate_content(prompt) | |
return response.text if response else "β οΈ No response received." | |
except Exception as e: | |
st.error(f"β οΈ Error using Generative AI: {e}") | |
return None | |
# Extract query parameters | |
query_params = st.experimental_get_query_params() | |
latitude = query_params.get("lat", [""])[0] | |
longitude = query_params.get("lon", [""])[0] | |
address = query_params.get("addr", [""])[0] | |
# Display detected location | |
st.header("π Detected Location") | |
st.success(f"**Latitude:** {latitude}") | |
st.success(f"**Longitude:** {longitude}") | |
st.success(f"**Address:** {address}") | |
# Streamlit UI | |
st.title("ποΈ BinSight: Upload Dustbin Image") | |
uploaded_file = st.file_uploader("π· Upload a dustbin image", type=["jpg", "jpeg", "png"]) | |
if uploaded_file: | |
image = Image.open(uploaded_file) | |
st.image(image, caption="πΈ Uploaded Image", use_column_width=True) | |
image_base64 = convert_image_to_base64(image) | |
classification_results = classify_image(image) | |
st.header("π§ͺ Classification Results") | |
for label, confidence in classification_results.items(): | |
st.write(f"β **{label}:** {confidence}%") | |
if not is_dustbin_image(classification_results): | |
st.error("β οΈ Please upload a valid dustbin image. No dustbin detected in the image.") | |
st.stop() | |
st.header("π§ AI Analysis & Recommendations") | |
gemini_response = get_genai_response(classification_results, (latitude, longitude, address)) | |
st.write(gemini_response) | |
dustbin_data = { | |
"latitude": latitude, | |
"longitude": longitude, | |
"address": address, | |
"classification": classification_results, | |
"allocated_truck": None, | |
"status": "Pending", | |
"image": image_base64 | |
} | |
db.reference("dustbins").push(dustbin_data) | |
st.success("β Dustbin data uploaded successfully!") | |
# Thank You Message with Styling | |
st.markdown( | |
""" | |
<div style=" | |
background-color: #DFF2BF; | |
color: #4F8A10; | |
padding: 20px; | |
border-radius: 10px; | |
text-align: center; | |
font-size: 18px; | |
margin-top: 20px;"> | |
π <b>Thank You for Your Contribution!</b> π<br><br> | |
Your effort in uploading this image helps keep our environment clean and green. π±β»οΈ<br> | |
Together, we make a difference! π | |
</div> | |
""", unsafe_allow_html=True | |
) | |
# Back button to redirect to dashboard | |
# st.markdown("<br>", unsafe_allow_html=True) | |
# st.markdown("<a href='https://binsight.onrender.com/dashboard.html' target='_self' style='text-decoration:none;'><button style='padding: 10px 20px; font-size: 16px;'>β¬ Back to Dashboard</button></a>", unsafe_allow_html=True) | |
# Best version without back button | |
# import streamlit as st | |
# import requests | |
# import google.generativeai as genai | |
# import firebase_admin | |
# from firebase_admin import credentials, db | |
# from PIL import Image | |
# import numpy as np | |
# import base64 | |
# from io import BytesIO | |
# from tensorflow.keras.applications import MobileNetV2 | |
# from tensorflow.keras.applications.mobilenet_v2 import decode_predictions, preprocess_input | |
# # Initialize Firebase | |
# if not firebase_admin._apps: | |
# cred = credentials.Certificate("firebase_credentials.json") | |
# firebase_admin.initialize_app(cred, { | |
# 'databaseURL': 'https://binsight-beda0-default-rtdb.asia-southeast1.firebasedatabase.app/' | |
# }) | |
# # Configure Gemini 2.0 Flash (gemini-1.5-flash) | |
# genai.configure(api_key="AIzaSyBREh8Uei7uDCbzPaYW2WdalOdjVWcQLAM") # Replace with actual API key | |
# # Load MobileNetV2 pre-trained model | |
# mobilenet_model = MobileNetV2(weights="imagenet") | |
# # Function to classify image | |
# def classify_image(image): | |
# img = image.resize((224, 224)) | |
# img_array = np.array(img) | |
# img_array = np.expand_dims(img_array, axis=0) | |
# img_array = preprocess_input(img_array) | |
# predictions = mobilenet_model.predict(img_array) | |
# labels = decode_predictions(predictions, top=5)[0] | |
# return {label[1]: round(float(label[2]) * 100, 2) for label in labels} | |
# # Function to check if image is a dustbin | |
# def is_dustbin_image(classification_results): | |
# dustbin_keywords = ["trash", "bin", "garbage", "waste", "dustbin", "ashcan", "recycle", "rubbish"] | |
# return any(any(keyword in label.lower() for keyword in dustbin_keywords) for label in classification_results.keys()) | |
# # Function to convert image to Base64 | |
# def convert_image_to_base64(image): | |
# buffered = BytesIO() | |
# image.save(buffered, format="PNG") | |
# return base64.b64encode(buffered.getvalue()).decode() | |
# # Function to generate AI recommendations using Gemini 2.0 Flash | |
# def get_genai_response(classification_results, location): | |
# try: | |
# classification_summary = "\n".join([f"- **{label}:** {score}%" for label, score in classification_results.items()]) | |
# location_summary = f""" | |
# - **Latitude:** {location[0] if location[0] else 'N/A'} | |
# - **Longitude:** {location[1] if location[1] else 'N/A'} | |
# - **Address:** {location[2] if location[2] else 'N/A'} | |
# """ | |
# prompt = f""" | |
# ### You are an environmental expert. Analyze the following waste classification: | |
# **1. Image Classification Results:** | |
# {classification_summary} | |
# **2. Location Details:** | |
# {location_summary} | |
# ### Required Analysis: | |
# - Describe the waste detected in the image. | |
# - Potential health & environmental risks. | |
# - Recommended disposal methods & precautions. | |
# - Eco-friendly alternatives. | |
# """ | |
# model = genai.GenerativeModel("gemini-1.5-flash") | |
# response = model.generate_content(prompt) | |
# return response.text if response else "β οΈ No response received." | |
# except Exception as e: | |
# st.error(f"β οΈ Error using Generative AI: {e}") | |
# return None | |
# # Extract query parameters | |
# query_params = st.experimental_get_query_params() | |
# latitude = query_params.get("lat", [""])[0] | |
# longitude = query_params.get("lon", [""])[0] | |
# address = query_params.get("addr", [""])[0] | |
# # Display detected location | |
# st.header("π Detected Location") | |
# st.success(f"**Latitude:** {latitude}") | |
# st.success(f"**Longitude:** {longitude}") | |
# st.success(f"**Address:** {address}") | |
# # Streamlit UI | |
# st.title("ποΈ BinSight: Upload Dustbin Image") | |
# uploaded_file = st.file_uploader("π· Upload a dustbin image", type=["jpg", "jpeg", "png"]) | |
# if uploaded_file: | |
# image = Image.open(uploaded_file) | |
# st.image(image, caption="πΈ Uploaded Image", use_column_width=True) | |
# image_base64 = convert_image_to_base64(image) | |
# classification_results = classify_image(image) | |
# st.header("π§ͺ Classification Results") | |
# for label, confidence in classification_results.items(): | |
# st.write(f"β **{label}:** {confidence}%") | |
# if not is_dustbin_image(classification_results): | |
# st.error("β οΈ Please upload a valid dustbin image. No dustbin detected in the image.") | |
# st.stop() | |
# st.header("π§ AI Analysis & Recommendations") | |
# gemini_response = get_genai_response(classification_results, (latitude, longitude, address)) | |
# st.write(gemini_response) | |
# dustbin_data = { | |
# "latitude": latitude, | |
# "longitude": longitude, | |
# "address": address, | |
# "classification": classification_results, | |
# "allocated_truck": None, | |
# "status": "Pending", | |
# "image": image_base64 | |
# } | |
# db.reference("dustbins").push(dustbin_data) | |
# st.success("β Dustbin data uploaded successfully!") | |
# # Thank You Message with Styling | |
# st.markdown( | |
# """ | |
# <div style=" | |
# background-color: #DFF2BF; | |
# color: #4F8A10; | |
# padding: 20px; | |
# border-radius: 10px; | |
# text-align: center; | |
# font-size: 18px; | |
# margin-top: 20px;"> | |
# π <b>Thank You for Your Contribution!</b> π<br><br> | |
# Your effort in uploading this image helps keep our environment clean and green. π±β»οΈ<br> | |
# Together, we make a difference! π | |
# </div> | |
# """, unsafe_allow_html=True | |
# ) | |
# BEST version till now | |
# import streamlit as st | |
# import requests | |
# import google.generativeai as genai | |
# import firebase_admin | |
# from firebase_admin import credentials, db | |
# from PIL import Image | |
# import numpy as np | |
# import base64 | |
# from io import BytesIO | |
# from tensorflow.keras.applications import MobileNetV2 | |
# from tensorflow.keras.applications.mobilenet_v2 import decode_predictions, preprocess_input | |
# # Initialize Firebase | |
# if not firebase_admin._apps: | |
# cred = credentials.Certificate("firebase_credentials.json") | |
# firebase_admin.initialize_app(cred, { | |
# 'databaseURL': 'https://binsight-beda0-default-rtdb.asia-southeast1.firebasedatabase.app/' | |
# }) | |
# # Configure Gemini 2.0 Flash (gemini-1.5-flash) | |
# genai.configure(api_key="AIzaSyBREh8Uei7uDCbzPaYW2WdalOdjVWcQLAM") # Replace with actual API key | |
# # Load MobileNetV2 pre-trained model | |
# mobilenet_model = MobileNetV2(weights="imagenet") | |
# # Function to classify image | |
# def classify_image(image): | |
# img = image.resize((224, 224)) | |
# img_array = np.array(img) | |
# img_array = np.expand_dims(img_array, axis=0) | |
# img_array = preprocess_input(img_array) | |
# predictions = mobilenet_model.predict(img_array) | |
# labels = decode_predictions(predictions, top=5)[0] | |
# return {label[1]: round(float(label[2]) * 100, 2) for label in labels} # Convert confidence to percentage | |
# # Function to check if image is a dustbin | |
# def is_dustbin_image(classification_results): | |
# dustbin_keywords = ["trash", "bin", "garbage", "waste", "dustbin", "ashcan", "recycle", "rubbish"] | |
# for label, confidence in classification_results.items(): | |
# if any(keyword in label.lower() for keyword in dustbin_keywords): | |
# return True | |
# return False | |
# # Function to convert image to Base64 | |
# def convert_image_to_base64(image): | |
# buffered = BytesIO() | |
# image.save(buffered, format="PNG") | |
# return base64.b64encode(buffered.getvalue()).decode() | |
# # Function to generate AI recommendations using Gemini 2.0 Flash | |
# def get_genai_response(classification_results, location): | |
# try: | |
# classification_summary = "\n".join([f"- **{label}:** {score}%" for label, score in classification_results.items()]) | |
# location_summary = f""" | |
# - **Latitude:** {location[0] if location[0] else 'N/A'} | |
# - **Longitude:** {location[1] if location[1] else 'N/A'} | |
# - **Address:** {location[2] if location[2] else 'N/A'} | |
# """ | |
# prompt = f""" | |
# ### You are an environmental expert. Analyze the following waste classification: | |
# **1. Image Classification Results:** | |
# {classification_summary} | |
# **2. Location Details:** | |
# {location_summary} | |
# ### Required Analysis: | |
# - Describe the waste detected in the image. | |
# - Potential health & environmental risks. | |
# - Recommended disposal methods & precautions. | |
# - Eco-friendly alternatives. | |
# """ | |
# model = genai.GenerativeModel("gemini-1.5-flash") # Using Gemini 2.0 Flash | |
# response = model.generate_content(prompt) | |
# return response.text if response else "β οΈ No response received." | |
# except Exception as e: | |
# st.error(f"β οΈ Error using Generative AI: {e}") | |
# return None | |
# # **Fix: Revert to `st.experimental_get_query_params()` for full location display** | |
# query_params = st.experimental_get_query_params() | |
# latitude = query_params.get("lat", [""])[0] # Extract full latitude | |
# longitude = query_params.get("lon", [""])[0] # Extract full longitude | |
# address = query_params.get("addr", [""])[0] # Extract full address | |
# # **Ensure full location values are displayed correctly** | |
# st.header("π Detected Location") | |
# st.success(f"**Latitude:** {latitude}") | |
# st.success(f"**Longitude:** {longitude}") | |
# st.success(f"**Address:** {address}") | |
# # Streamlit App UI | |
# st.title("ποΈ BinSight: Upload Dustbin Image") | |
# uploaded_file = st.file_uploader("π· Upload a dustbin image", type=["jpg", "jpeg", "png"]) | |
# if uploaded_file: | |
# image = Image.open(uploaded_file) | |
# st.image(image, caption="πΈ Uploaded Image", use_container_width=True) | |
# # Convert image to Base64 | |
# image_base64 = convert_image_to_base64(image) | |
# # Classify Image | |
# classification_results = classify_image(image) | |
# # Display classification results | |
# st.header("π§ͺ Classification Results") | |
# if classification_results: | |
# for label, confidence in classification_results.items(): | |
# st.write(f"β **{label}:** {confidence}%") | |
# else: | |
# st.error("β οΈ No classification results found.") | |
# st.stop() | |
# # **NEW CONDITION**: Ensure image is a dustbin before proceeding | |
# if not is_dustbin_image(classification_results): | |
# st.error("β οΈ Please upload a valid dustbin image. No dustbin detected in the image.") | |
# st.stop() | |
# # **Generate AI insights (Only Display, Not Store)** | |
# st.header("π§ AI Analysis & Recommendations") | |
# gemini_response = get_genai_response(classification_results, (latitude, longitude, address)) | |
# st.write(gemini_response) | |
# # Save only location, classification, and image in Firebase | |
# dustbin_data = { | |
# "latitude": latitude, | |
# "longitude": longitude, | |
# "address": address, | |
# "classification": classification_results, | |
# "allocated_truck": None, | |
# "status": "Pending", | |
# "image": image_base64 | |
# } | |
# db.reference("dustbins").push(dustbin_data) # Save data to Firebase | |
# st.success("β Dustbin data uploaded successfully!") | |
## working well for embedded in html page but it is not taking full location | |
#import streamlit as st | |
# import requests | |
# import google.generativeai as genai | |
# import firebase_admin | |
# from firebase_admin import credentials, db | |
# from PIL import Image | |
# import numpy as np | |
# import base64 | |
# from io import BytesIO | |
# from tensorflow.keras.applications import MobileNetV2 | |
# from tensorflow.keras.applications.mobilenet_v2 import decode_predictions, preprocess_input | |
# # Initialize Firebase | |
# if not firebase_admin._apps: | |
# cred = credentials.Certificate("firebase_credentials.json") | |
# firebase_admin.initialize_app(cred, { | |
# 'databaseURL': 'https://binsight-beda0-default-rtdb.asia-southeast1.firebasedatabase.app/' | |
# }) | |
# # Configure Gemini AI | |
# genai.configure(api_key="AIzaSyBREh8Uei7uDCbzPaYW2WdalOdjVWcQLAM") # Replace with your actual API key | |
# # Load MobileNetV2 pre-trained model | |
# mobilenet_model = MobileNetV2(weights="imagenet") | |
# # Function to classify image | |
# def classify_image(image): | |
# img = image.resize((224, 224)) | |
# img_array = np.array(img) | |
# img_array = np.expand_dims(img_array, axis=0) | |
# img_array = preprocess_input(img_array) | |
# predictions = mobilenet_model.predict(img_array) | |
# labels = decode_predictions(predictions, top=5)[0] | |
# return {label[1]: round(float(label[2]) * 100, 2) for label in labels} # Convert confidence to percentage | |
# # Function to convert image to Base64 | |
# def convert_image_to_base64(image): | |
# buffered = BytesIO() | |
# image.save(buffered, format="PNG") | |
# return base64.b64encode(buffered.getvalue()).decode() | |
# # Function to interact with Gemini AI (Only Show Results, Do NOT Save to Firebase) | |
# def get_genai_response(classification_results, location): | |
# try: | |
# classification_summary = "\n".join([f"- **{label}:** {score}%" for label, score in classification_results.items()]) | |
# location_summary = f""" | |
# - **Latitude:** {location[0] if location[0] else 'N/A'} | |
# - **Longitude:** {location[1] if location[1] else 'N/A'} | |
# - **Address:** {location[2] if location[2] else 'N/A'} | |
# """ | |
# prompt = f""" | |
# ### You are an environmental expert. Analyze the following waste classification: | |
# **1. Image Classification Results:** | |
# {classification_summary} | |
# **2. Location Details:** | |
# {location_summary} | |
# ### Required Analysis: | |
# - Describe the waste detected in the image. | |
# - Potential health & environmental risks. | |
# - Recommended disposal methods & precautions. | |
# - Eco-friendly alternatives. | |
# """ | |
# model = genai.GenerativeModel("gemini-1.5-flash") | |
# response = model.generate_content(prompt) | |
# return response.text if response else "β οΈ No response received." | |
# except Exception as e: | |
# st.error(f"β οΈ Error using Generative AI: {e}") | |
# return None | |
# # Extract location data from URL parameters | |
# query_params = st.query_params | |
# latitude = str(query_params.get("lat", [None])[0]) # Convert to string | |
# longitude = str(query_params.get("lon", [None])[0]) # Convert to string | |
# address = str(query_params.get("addr", [""])[0]) # Convert to full address | |
# # Display user location | |
# st.header("π Detected Location") | |
# if latitude and longitude: | |
# st.success(f"**Latitude:** {latitude}, **Longitude:** {longitude}") | |
# st.success(f"**Address:** {address}") | |
# else: | |
# st.error("β οΈ Location data not received. Enable location detection in the main page.") | |
# # Streamlit App UI | |
# st.title("ποΈ BinSight: Upload Dustbin Image") | |
# uploaded_file = st.file_uploader("π· Upload a dustbin image", type=["jpg", "jpeg", "png"]) | |
# if uploaded_file: | |
# image = Image.open(uploaded_file) | |
# st.image(image, caption="πΈ Uploaded Image", use_container_width=True) | |
# # Convert image to Base64 | |
# image_base64 = convert_image_to_base64(image) | |
# # Classify Image | |
# classification_results = classify_image(image) | |
# # Display classification results | |
# st.header("π§ͺ Classification Results") | |
# if classification_results: | |
# for label, confidence in classification_results.items(): | |
# st.write(f"β **{label}:** {confidence}%") | |
# else: | |
# st.error("β οΈ No classification results found.") | |
# # Get AI insights but DO NOT save to Firebase | |
# st.header("π§ AI Analysis & Recommendations") | |
# gemini_response = get_genai_response(classification_results, (latitude, longitude, address)) | |
# st.write(gemini_response) | |
# # Save only location, classification, and image in Firebase | |
# dustbin_data = { | |
# "latitude": latitude, | |
# "longitude": longitude, | |
# "address": address, | |
# "classification": classification_results, | |
# "allocated_truck": None, | |
# "status": "Pending", | |
# "image": image_base64 | |
# } | |
# db.reference("dustbins").push(dustbin_data) # Save data to Firebase | |
# st.success("β Dustbin data uploaded successfully!") | |
## Best but not working location proper | |
# import streamlit as st | |
# import requests | |
# import firebase_admin | |
# from firebase_admin import credentials, db, auth | |
# from PIL import Image | |
# import numpy as np | |
# from geopy.geocoders import Nominatim | |
# from tensorflow.keras.applications import MobileNetV2 | |
# from tensorflow.keras.applications.mobilenet_v2 import decode_predictions, preprocess_input | |
# import json | |
# import base64 | |
# from io import BytesIO | |
# # Initialize Firebase (Check if already initialized) | |
# if not firebase_admin._apps: | |
# cred = credentials.Certificate("firebase_credentials.json") | |
# firebase_admin.initialize_app(cred, { | |
# 'databaseURL': 'https://binsight-beda0-default-rtdb.asia-southeast1.firebasedatabase.app/' | |
# }) | |
# # Load MobileNetV2 pre-trained model | |
# mobilenet_model = MobileNetV2(weights="imagenet") | |
# # Function to classify the uploaded image using MobileNetV2 | |
# def classify_image_with_mobilenet(image): | |
# try: | |
# img = image.resize((224, 224)) | |
# img_array = np.array(img) | |
# img_array = np.expand_dims(img_array, axis=0) | |
# img_array = preprocess_input(img_array) | |
# predictions = mobilenet_model.predict(img_array) | |
# labels = decode_predictions(predictions, top=5)[0] | |
# return {label[1]: float(label[2]) for label in labels} | |
# except Exception as e: | |
# st.error(f"Error during image classification: {e}") | |
# return {} | |
# # Function to get user's location | |
# def get_user_location(): | |
# st.write("Fetching location, please allow location access in your browser.") | |
# geolocator = Nominatim(user_agent="binsight") | |
# try: | |
# ip_info = requests.get("https://ipinfo.io/json").json() | |
# loc = ip_info.get("loc", "").split(",") | |
# latitude, longitude = loc[0], loc[1] if len(loc) == 2 else (None, None) | |
# if latitude and longitude: | |
# address = geolocator.reverse(f"{latitude}, {longitude}").address | |
# return latitude, longitude, address | |
# except Exception as e: | |
# st.error(f"Error retrieving location: {e}") | |
# return None, None, None | |
# # Function to convert image to Base64 | |
# def convert_image_to_base64(image): | |
# buffered = BytesIO() | |
# image.save(buffered, format="PNG") # Convert to PNG format | |
# img_str = base64.b64encode(buffered.getvalue()).decode() # Encode as Base64 | |
# return img_str | |
# # User Login | |
# st.sidebar.header("User Login") | |
# user_email = st.sidebar.text_input("Enter your email") | |
# login_button = st.sidebar.button("Login") | |
# if login_button: | |
# if user_email: | |
# st.session_state["user_email"] = user_email | |
# st.sidebar.success(f"Logged in as {user_email}") | |
# if "user_email" not in st.session_state: | |
# st.warning("Please log in first.") | |
# st.stop() | |
# # Get user location | |
# latitude, longitude, address = get_user_location() | |
# if latitude and longitude: | |
# st.success(f"Location detected: {address}") | |
# else: | |
# st.warning("Unable to fetch location, please enable location access.") | |
# st.stop() | |
# # Streamlit App | |
# st.title("BinSight: Upload Dustbin Image") | |
# uploaded_file = st.file_uploader("Upload an image of the dustbin", type=["jpg", "jpeg", "png"]) | |
# submit_button = st.button("Analyze and Upload") | |
# if submit_button and uploaded_file: | |
# image = Image.open(uploaded_file) | |
# st.image(image, caption="Uploaded Image", use_container_width=True) | |
# # Convert image to Base64 | |
# image_base64 = convert_image_to_base64(image) | |
# # Classify Image | |
# classification_results = classify_image_with_mobilenet(image) | |
# if classification_results: | |
# db_ref = db.reference("dustbins") | |
# dustbin_data = { | |
# "user_email": st.session_state["user_email"], | |
# "latitude": latitude, | |
# "longitude": longitude, | |
# "address": address, | |
# "classification": classification_results, | |
# "allocated_truck": None, | |
# "status": "Pending", | |
# "image": image_base64 # Store image as Base64 string | |
# } | |
# db_ref.push(dustbin_data) | |
# st.success("Dustbin data uploaded successfully!") | |
# st.write(f"**Location:** {address}") | |
# st.write(f"**Latitude:** {latitude}, **Longitude:** {longitude}") | |
# else: | |
# st.error("Missing classification details. Cannot upload.") | |
# best without image | |
# import streamlit as st | |
# import requests | |
# import firebase_admin | |
# from firebase_admin import credentials, db, auth | |
# from PIL import Image | |
# import numpy as np | |
# from geopy.geocoders import Nominatim | |
# from tensorflow.keras.applications import MobileNetV2 | |
# from tensorflow.keras.applications.mobilenet_v2 import decode_predictions, preprocess_input | |
# import json | |
# # Initialize Firebase | |
# if not firebase_admin._apps: | |
# cred = credentials.Certificate("firebase_credentials.json") | |
# firebase_admin.initialize_app(cred, { | |
# 'databaseURL': 'https://binsight-beda0-default-rtdb.asia-southeast1.firebasedatabase.app/' | |
# }) | |
# # Load MobileNetV2 pre-trained model | |
# mobilenet_model = MobileNetV2(weights="imagenet") | |
# # Function to classify the uploaded image using MobileNetV2 | |
# def classify_image_with_mobilenet(image): | |
# try: | |
# img = image.resize((224, 224)) | |
# img_array = np.array(img) | |
# img_array = np.expand_dims(img_array, axis=0) | |
# img_array = preprocess_input(img_array) | |
# predictions = mobilenet_model.predict(img_array) | |
# labels = decode_predictions(predictions, top=5)[0] | |
# return {label[1]: float(label[2]) for label in labels} | |
# except Exception as e: | |
# st.error(f"Error during image classification: {e}") | |
# return {} | |
# # Function to get user's location using geolocation API | |
# def get_user_location(): | |
# st.write("Fetching location, please allow location access in your browser.") | |
# geolocator = Nominatim(user_agent="binsight") | |
# try: | |
# ip_info = requests.get("https://ipinfo.io/json").json() | |
# loc = ip_info.get("loc", "").split(",") | |
# latitude, longitude = loc[0], loc[1] if len(loc) == 2 else (None, None) | |
# if latitude and longitude: | |
# address = geolocator.reverse(f"{latitude}, {longitude}").address | |
# return latitude, longitude, address | |
# except Exception as e: | |
# st.error(f"Error retrieving location: {e}") | |
# return None, None, None | |
# # User Login | |
# st.sidebar.header("User Login") | |
# user_email = st.sidebar.text_input("Enter your email") | |
# login_button = st.sidebar.button("Login") | |
# if login_button: | |
# if user_email: | |
# st.session_state["user_email"] = user_email | |
# st.sidebar.success(f"Logged in as {user_email}") | |
# if "user_email" not in st.session_state: | |
# st.warning("Please log in first.") | |
# st.stop() | |
# # Get user location and display details | |
# latitude, longitude, address = get_user_location() | |
# if latitude and longitude: | |
# st.success(f"Location detected: {address}") | |
# else: | |
# st.warning("Unable to fetch location, please ensure location access is enabled.") | |
# st.stop() | |
# # Streamlit App | |
# st.title("BinSight: Upload Dustbin Image") | |
# uploaded_file = st.file_uploader("Upload an image of the dustbin", type=["jpg", "jpeg", "png"]) | |
# submit_button = st.button("Analyze and Upload") | |
# if submit_button and uploaded_file: | |
# image = Image.open(uploaded_file) | |
# st.image(image, caption="Uploaded Image", use_container_width=True) | |
# classification_results = classify_image_with_mobilenet(image) | |
# if classification_results: | |
# db_ref = db.reference("dustbins") | |
# dustbin_data = { | |
# "user_email": st.session_state["user_email"], | |
# "latitude": latitude, | |
# "longitude": longitude, | |
# "address": address, | |
# "classification": classification_results, | |
# "allocated_truck": None, | |
# "status": "Pending" | |
# } | |
# db_ref.push(dustbin_data) | |
# st.success("Dustbin data uploaded successfully!") | |
# st.write(f"**Location:** {address}") | |
# st.write(f"**Latitude:** {latitude}, **Longitude:** {longitude}") | |
# else: | |
# st.error("Missing classification details. Cannot upload.") | |
# best with firebase but below code is not giving correct location of user. | |
# import streamlit as st | |
# import requests | |
# import firebase_admin | |
# from firebase_admin import credentials, db, auth | |
# from PIL import Image | |
# import numpy as np | |
# from geopy.geocoders import Nominatim | |
# from tensorflow.keras.applications import MobileNetV2 | |
# from tensorflow.keras.applications.mobilenet_v2 import decode_predictions, preprocess_input | |
# # Initialize Firebase | |
# if not firebase_admin._apps: | |
# cred = credentials.Certificate("firebase_credentials.json") | |
# firebase_admin.initialize_app(cred, { | |
# 'databaseURL': 'https://binsight-beda0-default-rtdb.asia-southeast1.firebasedatabase.app/' | |
# }) | |
# # Load MobileNetV2 pre-trained model | |
# mobilenet_model = MobileNetV2(weights="imagenet") | |
# # Function to classify the uploaded image using MobileNetV2 | |
# def classify_image_with_mobilenet(image): | |
# try: | |
# img = image.resize((224, 224)) | |
# img_array = np.array(img) | |
# img_array = np.expand_dims(img_array, axis=0) | |
# img_array = preprocess_input(img_array) | |
# predictions = mobilenet_model.predict(img_array) | |
# labels = decode_predictions(predictions, top=5)[0] | |
# return {label[1]: float(label[2]) for label in labels} | |
# except Exception as e: | |
# st.error(f"Error during image classification: {e}") | |
# return {} | |
# # Function to get user's location | |
# def get_user_location(): | |
# try: | |
# ip_info = requests.get("https://ipinfo.io/json").json() | |
# location = ip_info.get("loc", "").split(",") | |
# latitude = location[0] if len(location) > 0 else None | |
# longitude = location[1] if len(location) > 1 else None | |
# if latitude and longitude: | |
# geolocator = Nominatim(user_agent="binsight") | |
# address = geolocator.reverse(f"{latitude}, {longitude}").address | |
# return latitude, longitude, address | |
# return None, None, None | |
# except Exception as e: | |
# st.error(f"Unable to get location: {e}") | |
# return None, None, None | |
# # User Login | |
# st.sidebar.header("User Login") | |
# user_email = st.sidebar.text_input("Enter your email") | |
# login_button = st.sidebar.button("Login") | |
# if login_button: | |
# if user_email: | |
# st.session_state["user_email"] = user_email | |
# st.sidebar.success(f"Logged in as {user_email}") | |
# if "user_email" not in st.session_state: | |
# st.warning("Please log in first.") | |
# st.stop() | |
# # Streamlit App | |
# st.title("BinSight: Upload Dustbin Image") | |
# uploaded_file = st.file_uploader("Upload an image of the dustbin", type=["jpg", "jpeg", "png"]) | |
# submit_button = st.button("Analyze and Upload") | |
# if submit_button and uploaded_file: | |
# image = Image.open(uploaded_file) | |
# st.image(image, caption="Uploaded Image", use_container_width=True) | |
# classification_results = classify_image_with_mobilenet(image) | |
# latitude, longitude, address = get_user_location() | |
# if latitude and longitude and classification_results: | |
# db_ref = db.reference("dustbins") | |
# dustbin_data = { | |
# "user_email": st.session_state["user_email"], | |
# "latitude": latitude, | |
# "longitude": longitude, | |
# "address": address, | |
# "classification": classification_results, | |
# "allocated_truck": None, | |
# "status": "Pending" | |
# } | |
# db_ref.push(dustbin_data) | |
# st.success("Dustbin data uploaded successfully!") | |
# else: | |
# st.error("Missing classification or location details. Cannot upload.") | |
# Below is the old version but it is without of firebase and here is the addition of gemini. | |
# import streamlit as st | |
# import os | |
# from PIL import Image | |
# import numpy as np | |
# from io import BytesIO | |
# from dotenv import load_dotenv | |
# from geopy.geocoders import Nominatim | |
# from tensorflow.keras.applications import MobileNetV2 | |
# from tensorflow.keras.applications.mobilenet_v2 import decode_predictions, preprocess_input | |
# import requests | |
# import google.generativeai as genai | |
# # Load environment variables | |
# load_dotenv() | |
# # Configure Generative AI | |
# genai.configure(api_key='AIzaSyBREh8Uei7uDCbzPaYW2WdalOdjVWcQLAM') | |
# # Load MobileNetV2 pre-trained model | |
# mobilenet_model = MobileNetV2(weights="imagenet") | |
# # Function to classify the uploaded image using MobileNetV2 | |
# def classify_image_with_mobilenet(image): | |
# try: | |
# img = image.resize((224, 224)) | |
# img_array = np.array(img) | |
# img_array = np.expand_dims(img_array, axis=0) | |
# img_array = preprocess_input(img_array) | |
# predictions = mobilenet_model.predict(img_array) | |
# labels = decode_predictions(predictions, top=5)[0] | |
# return {label[1]: float(label[2]) for label in labels} | |
# except Exception as e: | |
# st.error(f"Error during image classification: {e}") | |
# return {} | |
# # Function to get user's location | |
# def get_user_location(): | |
# try: | |
# ip_info = requests.get("https://ipinfo.io/json").json() | |
# location = ip_info.get("loc", "").split(",") | |
# latitude = location[0] if len(location) > 0 else None | |
# longitude = location[1] if len(location) > 1 else None | |
# if latitude and longitude: | |
# geolocator = Nominatim(user_agent="binsight") | |
# address = geolocator.reverse(f"{latitude}, {longitude}").address | |
# return latitude, longitude, address | |
# return None, None, None | |
# except Exception as e: | |
# st.error(f"Unable to get location: {e}") | |
# return None, None, None | |
# # Function to get nearest municipal details with contact info | |
# def get_nearest_municipal_details(latitude, longitude): | |
# try: | |
# if latitude and longitude: | |
# # Simulating municipal service retrieval | |
# municipal_services = [ | |
# {"latitude": "12.9716", "longitude": "77.5946", "office": "Bangalore Municipal Office", "phone": "+91-80-12345678"}, | |
# {"latitude": "28.7041", "longitude": "77.1025", "office": "Delhi Municipal Office", "phone": "+91-11-98765432"}, | |
# {"latitude": "19.0760", "longitude": "72.8777", "office": "Mumbai Municipal Office", "phone": "+91-22-22334455"}, | |
# ] | |
# # Find the nearest municipal service (mock logic: matching first two decimal points) | |
# for service in municipal_services: | |
# if str(latitude).startswith(service["latitude"][:5]) and str(longitude).startswith(service["longitude"][:5]): | |
# return f""" | |
# **Office**: {service['office']} | |
# **Phone**: {service['phone']} | |
# """ | |
# return "No nearby municipal office found. Please check manually." | |
# else: | |
# return "Location not available. Unable to fetch municipal details." | |
# except Exception as e: | |
# st.error(f"Unable to fetch municipal details: {e}") | |
# return None | |
# # Function to interact with Generative AI | |
# def get_genai_response(classification_results, location): | |
# try: | |
# classification_summary = "\n".join([f"{label}: {score:.2f}" for label, score in classification_results.items()]) | |
# location_summary = f""" | |
# Latitude: {location[0] if location[0] else 'N/A'} | |
# Longitude: {location[1] if location[1] else 'N/A'} | |
# Address: {location[2] if location[2] else 'N/A'} | |
# """ | |
# prompt = f""" | |
# ### You are an environmental expert. Analyze the following: | |
# 1. **Image Classification**: | |
# - {classification_summary} | |
# 2. **Location**: | |
# - {location_summary} | |
# ### Output Required: | |
# 1. Detailed insights about the waste detected in the image. | |
# 2. Specific health risks associated with the detected waste type. | |
# 3. Precautions to mitigate these health risks. | |
# 4. Recommendations for proper disposal. | |
# """ | |
# model = genai.GenerativeModel('gemini-pro') | |
# response = model.generate_content(prompt) | |
# return response | |
# except Exception as e: | |
# st.error(f"Error using Generative AI: {e}") | |
# return None | |
# # Function to display Generative AI response | |
# def display_genai_response(response): | |
# st.subheader("Detailed Analysis and Recommendations") | |
# if response and response.candidates: | |
# response_content = response.candidates[0].content.parts[0].text if response.candidates[0].content.parts else "" | |
# st.write(response_content) | |
# else: | |
# st.write("No response received from Generative AI or quota exceeded.") | |
# # Streamlit App | |
# st.title("BinSight: AI-Powered Dustbin and Waste Analysis System") | |
# st.text("Upload a dustbin image and get AI-powered analysis of the waste and associated health recommendations.") | |
# uploaded_file = st.file_uploader("Upload an image of the dustbin", type=["jpg", "jpeg", "png"], help="Upload a clear image of a dustbin for analysis.") | |
# submit_button = st.button("Analyze Dustbin") | |
# if submit_button: | |
# if uploaded_file is not None: | |
# image = Image.open(uploaded_file) | |
# st.image(image, caption="Uploaded Image", use_container_width =True) | |
# # Classify the image using MobileNetV2 | |
# st.subheader("Image Classification") | |
# classification_results = classify_image_with_mobilenet(image) | |
# for label, score in classification_results.items(): | |
# st.write(f"- **{label}**: {score:.2f}") | |
# # Get user location | |
# location = get_user_location() | |
# latitude, longitude, address = location | |
# st.subheader("User Location") | |
# st.write(f"Latitude: {latitude if latitude else 'N/A'}") | |
# st.write(f"Longitude: {longitude if longitude else 'N/A'}") | |
# st.write(f"Address: {address if address else 'N/A'}") | |
# # Get nearest municipal details with contact info | |
# st.subheader("Nearest Municipal Details") | |
# municipal_details = get_nearest_municipal_details(latitude, longitude) | |
# st.write(municipal_details) | |
# # Generate detailed analysis with Generative AI | |
# if classification_results: | |
# response = get_genai_response(classification_results, location) | |
# display_genai_response(response) | |
# else: | |
# st.write("Please upload an image for analysis.") | |
# # import streamlit as st | |
# # import os | |
# # from PIL import Image | |
# # import numpy as np | |
# # from io import BytesIO | |
# # from dotenv import load_dotenv | |
# # from geopy.geocoders import Nominatim | |
# # from tensorflow.keras.applications import MobileNetV2 | |
# # from tensorflow.keras.applications.mobilenet_v2 import decode_predictions, preprocess_input | |
# # import requests | |
# # import google.generativeai as genai | |
# # # Load environment variables | |
# # load_dotenv() | |
# # # Configure Generative AI | |
# # genai.configure(api_key='AIzaSyBREh8Uei7uDCbzPaYW2WdalOdjVWcQLAM') | |
# # # Load MobileNetV2 pre-trained model | |
# # mobilenet_model = MobileNetV2(weights="imagenet") | |
# # # Function to classify the uploaded image using MobileNetV2 | |
# # def classify_image_with_mobilenet(image): | |
# # try: | |
# # # Resize the image to the input size of MobileNetV2 | |
# # img = image.resize((224, 224)) | |
# # img_array = np.array(img) | |
# # img_array = np.expand_dims(img_array, axis=0) | |
# # img_array = preprocess_input(img_array) | |
# # # Predict using the MobileNetV2 model | |
# # predictions = mobilenet_model.predict(img_array) | |
# # labels = decode_predictions(predictions, top=5)[0] | |
# # return {label[1]: float(label[2]) for label in labels} | |
# # except Exception as e: | |
# # st.error(f"Error during image classification: {e}") | |
# # return {} | |
# # # Function to get user's location | |
# # def get_user_location(): | |
# # try: | |
# # # Fetch location using the IPInfo API | |
# # ip_info = requests.get("https://ipinfo.io/json").json() | |
# # location = ip_info.get("loc", "").split(",") | |
# # latitude = location[0] if len(location) > 0 else None | |
# # longitude = location[1] if len(location) > 1 else None | |
# # if latitude and longitude: | |
# # geolocator = Nominatim(user_agent="binsight") | |
# # address = geolocator.reverse(f"{latitude}, {longitude}").address | |
# # return latitude, longitude, address | |
# # return None, None, None | |
# # except Exception as e: | |
# # st.error(f"Unable to get location: {e}") | |
# # return None, None, None | |
# # # Function to get nearest municipal details | |
# # def get_nearest_municipal_details(latitude, longitude): | |
# # try: | |
# # if latitude and longitude: | |
# # # Simulating municipal service retrieval | |
# # return f"The nearest municipal office is at ({latitude}, {longitude}). Please contact your local authority for waste management services." | |
# # else: | |
# # return "Location not available. Unable to fetch municipal details." | |
# # except Exception as e: | |
# # st.error(f"Unable to fetch municipal details: {e}") | |
# # return None | |
# # # Function to interact with Generative AI | |
# # def get_genai_response(classification_results, location): | |
# # try: | |
# # # Construct prompt for Generative AI | |
# # classification_summary = "\n".join([f"{label}: {score:.2f}" for label, score in classification_results.items()]) | |
# # location_summary = f""" | |
# # Latitude: {location[0] if location[0] else 'N/A'} | |
# # Longitude: {location[1] if location[1] else 'N/A'} | |
# # Address: {location[2] if location[2] else 'N/A'} | |
# # """ | |
# # prompt = f""" | |
# # ### You are an environmental expert. Analyze the following: | |
# # 1. **Image Classification**: | |
# # - {classification_summary} | |
# # 2. **Location**: | |
# # - {location_summary} | |
# # ### Output Required: | |
# # 1. Detailed insights about the waste detected in the image. | |
# # 2. Specific health risks associated with the detected waste type. | |
# # 3. Precautions to mitigate these health risks. | |
# # 4. Recommendations for proper disposal. | |
# # """ | |
# # model = genai.GenerativeModel('gemini-pro') | |
# # response = model.generate_content(prompt) | |
# # return response | |
# # except Exception as e: | |
# # st.error(f"Error using Generative AI: {e}") | |
# # return None | |
# # # Function to display Generative AI response | |
# # def display_genai_response(response): | |
# # st.subheader("Detailed Analysis and Recommendations") | |
# # if response and response.candidates: | |
# # response_content = response.candidates[0].content.parts[0].text if response.candidates[0].content.parts else "" | |
# # st.write(response_content) | |
# # else: | |
# # st.write("No response received from Generative AI or quota exceeded.") | |
# # # Streamlit App | |
# # st.title("BinSight: AI-Powered Dustbin and Waste Analysis System") | |
# # st.text("Upload a dustbin image and get AI-powered analysis of the waste and associated health recommendations.") | |
# # uploaded_file = st.file_uploader("Upload an image of the dustbin", type=["jpg", "jpeg", "png"], help="Upload a clear image of a dustbin for analysis.") | |
# # submit_button = st.button("Analyze Dustbin") | |
# # if submit_button: | |
# # if uploaded_file is not None: | |
# # image = Image.open(uploaded_file) | |
# # st.image(image, caption="Uploaded Image", use_column_width=True) | |
# # # Classify the image using MobileNetV2 | |
# # st.subheader("Image Classification") | |
# # classification_results = classify_image_with_mobilenet(image) | |
# # for label, score in classification_results.items(): | |
# # st.write(f"- **{label}**: {score:.2f}") | |
# # # Get user location | |
# # location = get_user_location() | |
# # latitude, longitude, address = location | |
# # st.subheader("User Location") | |
# # st.write(f"Latitude: {latitude if latitude else 'N/A'}") | |
# # st.write(f"Longitude: {longitude if longitude else 'N/A'}") | |
# # st.write(f"Address: {address if address else 'N/A'}") | |
# # # Get nearest municipal details | |
# # st.subheader("Nearest Municipal Details") | |
# # municipal_details = get_nearest_municipal_details(latitude, longitude) | |
# # st.write(municipal_details) | |
# # # Generate detailed analysis with Generative AI | |
# # if classification_results: | |
# # response = get_genai_response(classification_results, location) | |
# # display_genai_response(response) | |
# # else: | |
# # st.write("Please upload an image for analysis.") | |