JohnAlexander23 commited on
Commit
090b539
·
verified ·
1 Parent(s): 8f18ffe

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -10
app.py CHANGED
@@ -91,17 +91,36 @@ print ("IMAGE MODEL CKPT:", MODEL_NAME)
91
  load_network(model, MODEL_NAME, strict=True, param_key='params')
92
 
93
 
94
- # Footer
95
- st.markdown(
96
- """
97
- <footer>
98
- By DL Titans
99
- </footer>
100
- """,
101
- unsafe_allow_html=True
102
- )
103
 
104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
  #### Image,Prompts examples
106
  examples = [
107
  ['images/0801x4.png'],
@@ -129,7 +148,6 @@ css = """
129
  }
130
  """
131
 
132
-
133
  demo = gr.Interface(
134
  fn=process_img,
135
  inputs=[gr.Image(type="pil", label="Input", value="images/0878x4.png"),],
 
91
  load_network(model, MODEL_NAME, strict=True, param_key='params')
92
 
93
 
 
 
 
 
 
 
 
 
 
94
 
95
 
96
+ title = "See More Details"
97
+ description = ''' ### See More Details: Efficient Image Super-Resolution by Experts Mining - ICML 2024, Vienna, Austria
98
+ #### [Eduard Zamfir<sup>1</sup>](https://eduardzamfir.github.io), [Zongwei Wu<sup>1*</sup>](https://sites.google.com/view/zwwu/accueil), [Nancy Mehta<sup>1</sup>](https://scholar.google.com/citations?user=WwdYdlUAAAAJ&hl=en&oi=ao), [Yulun Zhang<sup>2,3*</sup>](http://yulunzhang.com/) and [Radu Timofte<sup>1</sup>](https://www.informatik.uni-wuerzburg.de/computervision/)
99
+ #### **<sup>1</sup> University of Würzburg, Germany - <sup>2</sup> Shanghai Jiao Tong University, China - <sup>3</sup> ETH Zürich, Switzerland**
100
+ #### **<sup>*</sup> Corresponding authors**
101
+ <details>
102
+ <summary> <b> Abstract</b> (click me to read)</summary>
103
+ <p>
104
+ Reconstructing high-resolution (HR) images from low-resolution (LR) inputs poses a significant challenge in image super-resolution (SR). While recent approaches have demonstrated the efficacy of intricate operations customized for various objectives, the straightforward stacking of these disparate operations can result in a substantial computational burden, hampering their practical utility. In response, we introduce **S**eemo**R**e, an efficient SR model employing expert mining. Our approach strategically incorporates experts at different levels, adopting a collaborative methodology. At the macro scale, our experts address rank-wise and spatial-wise informative features, providing a holistic understanding. Subsequently, the model delves into the subtleties of rank choice by leveraging a mixture of low-rank experts. By tapping into experts specialized in distinct key factors crucial for accurate SR, our model excels in uncovering intricate intra-feature details. This collaborative approach is reminiscent of the concept of **see more**, allowing our model to achieve an optimal performance with minimal computational costs in efficient settings
105
+ </p>
106
+ </details>
107
+ #### Drag the slider on the super-resolution image left and right to see the changes in the image details. SeemoRe performs x4 upscaling on the input image.
108
+ <br>
109
+ <code>
110
+ @inproceedings{zamfir2024details,
111
+ title={See More Details: Efficient Image Super-Resolution by Experts Mining},
112
+ author={Eduard Zamfir and Zongwei Wu and Nancy Mehta and Yulun Zhang and Radu Timofte},
113
+ booktitle={International Conference on Machine Learning},
114
+ year={2024},
115
+ organization={PMLR}
116
+ }
117
+ </code>
118
+ <br>
119
+ '''
120
+
121
+
122
+ article = "<p style='text-align: center'><a href='https://eduardzamfir.github.io/seemore' target='_blank'>See More Details: Efficient Image Super-Resolution by Experts Mining</a></p>"
123
+
124
  #### Image,Prompts examples
125
  examples = [
126
  ['images/0801x4.png'],
 
148
  }
149
  """
150
 
 
151
  demo = gr.Interface(
152
  fn=process_img,
153
  inputs=[gr.Image(type="pil", label="Input", value="images/0878x4.png"),],