File size: 10,420 Bytes
925ac7f
 
b7fabea
54d8c8e
fbdc657
925ac7f
fbdc657
68e6513
 
 
 
b7fabea
54d8c8e
 
68e6513
fbdc657
 
 
 
68e6513
fbdc657
 
 
 
 
 
 
 
68e6513
fbdc657
68e6513
 
fbdc657
 
 
 
 
 
 
 
 
 
 
68e6513
 
 
fbdc657
 
68e6513
 
 
fbdc657
68e6513
fbdc657
 
54d8c8e
fbdc657
 
925ac7f
fbdc657
 
 
 
 
 
68e6513
 
 
 
 
 
 
 
54d8c8e
fbdc657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54d8c8e
fbdc657
68e6513
 
 
 
 
 
 
 
 
 
 
 
 
 
fbdc657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54d8c8e
925ac7f
54d8c8e
 
 
 
 
 
68e6513
54d8c8e
 
 
fbdc657
 
54d8c8e
68e6513
 
 
 
 
 
 
 
54d8c8e
68e6513
 
fbdc657
 
 
68e6513
 
 
 
fbdc657
68e6513
fbdc657
 
 
68e6513
 
 
 
 
 
fbdc657
 
 
68e6513
 
 
 
 
 
fbdc657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68e6513
 
 
54d8c8e
 
bbae640
 
54d8c8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import pandas as pd
import gradio as gr
import os
from gradio_rangeslider import RangeSlider
import math

from utils.filter_utils import filter, filter_cols

# MAPS = filter_utils.LANG_MAPPING

# Main Leaderboard containing everything
text_leaderboard = pd.read_csv(os.path.join('src', 'main_df.csv'))
text = "## The range is: {min} to {max}"

# Short leaderboard containing fixed columns
short_leaderboard = filter_cols(text_leaderboard)


## Extract data
langs = []
licenses = []
ip_prices = []
op_prices = []
latencies = []
parameters = []
contexts = []
dates = []

for i in range(len(text_leaderboard)):
    lang_splits = text_leaderboard.iloc[i]['Languages'].split(',')
    lang_splits = [s.strip() for s in lang_splits]
    langs += lang_splits
    license_name = text_leaderboard.iloc[i]['License Name']

    licenses.append(license_name)
    ip_prices.append(text_leaderboard.iloc[i]['Input $/1M'])
    op_prices.append(text_leaderboard.iloc[i]['Output $/1M'])
    latencies.append(text_leaderboard.iloc[i]['Average Latency (s)'])
    parameters.append(text_leaderboard.iloc[i]['Parameter Size (B)'])
    contexts.append(text_leaderboard.iloc[i]['Context Size'])
    dates.append(text_leaderboard.iloc[i]['Release Date'])


langs = list(set(langs))
langs.sort()

licenses = list(set(licenses))
licenses.sort()

max_input_price = max(ip_prices)
max_output_price = max(op_prices)
max_latency = max(latencies)

max_parameter = max(parameters)
max_parameter = math.ceil(math.log2(max_parameter))

max_context = max(contexts)/1024
max_context = math.ceil(math.log2(max_context))

min_date = min(dates)
max_date = max(dates)


llm_calc_app = gr.Blocks()
with llm_calc_app:        
    ### Language filter
    with gr.Row():
        lang_dropdown = gr.Dropdown(
            choices=langs,
            value=[],
            multiselect=True,
            label="Select Languages 🕹️"
        )

    with gr.Row():
        with gr.Column(scale=3):
            parameter_slider = RangeSlider(
                minimum=0, 
                maximum=max_parameter, 
                label="Select Parameters. Range -> 2^x - 2^y"
            )
        with gr.Column(scale=1):
            range_ = gr.Markdown(value=text.format(min=0, max=math.pow(2, max_parameter)))
            parameter_slider.change(lambda s: text.format(min=int(pow(2,s[0])), max=int(pow(2,s[1]))), parameter_slider, range_,
                                    show_progress="hide", trigger_mode="always_last")
            
    with gr.Row():
        with gr.Column(scale=3):
            context_slider = RangeSlider(
                minimum=0, 
                maximum=max_context, 
                label="Select Context length range. Range -> 2^x k - 2^y k"
            )
        with gr.Column(scale=1):
            context_range_ = gr.Markdown(value=text.format(min=0, max=math.pow(2, max_context)))
            context_slider.change(lambda s: text.format(min=int(pow(2,s[0])), max=int(pow(2,s[1]))), context_slider, context_range_,
                                    show_progress="hide", trigger_mode="always_last")
            
    with gr.Row():
        with gr.Column():
            start_date = gr.DateTime(
                value=min_date,
                type="string",
                label="Select start date"
            )

        with gr.Column():
            end_date = gr.DateTime(
                value=max_date,
                type="string",
                label="Select end date"
            )

    with gr.Row():
        input_pricing_slider = RangeSlider(
            minimum=0, 
            maximum=max_input_price, 
            value=(0, max_input_price), 
            label="Select Price range /1M input tokens"
        )
       
        output_pricing_slider = RangeSlider(
            minimum=0, 
            maximum=max_output_price, 
            value=(0, max_output_price), 
            label="Select Price range /1M output tokens"
        )
       
    with gr.Row():
        with gr.Column():
            multimodal_checkbox = gr.CheckboxGroup(
                choices=['Image', 'Multi-Image', 'Audio', 'Video'],
                value=[],
                label="Select additional Modalities",
            )

        with gr.Column():
            open_weight_checkbox = gr.CheckboxGroup(
                choices=['Open', 'Commercial'],
                value=['Open', 'Commercial'],
                label="Filter Open-weight model or commercial model",
            )    

        with gr.Column():
            license_checkbox = gr.CheckboxGroup(
                choices=licenses,
                value=licenses,
                label="Filter based on the type of License",
            )             



    with gr.Row():
        """
        Main Leaderboard Row
        """

        leaderboard_table = gr.Dataframe(
                                value=short_leaderboard,
                                elem_id="text-leaderboard-table",
                                interactive=False,
                                visible=True,
                                height=800,
                                datatype=['html', 'number', 'number', 'date', 'number', 'number', 'number', 'number', 'html']
                            )

        
        dummy_leaderboard_table = gr.Dataframe(
                                value=text_leaderboard,
                                elem_id="dummy-leaderboard-table",
                                interactive=False,
                                visible=False
                            )
        
        lang_dropdown.change(
            filter,
            [dummy_leaderboard_table, lang_dropdown, parameter_slider,
             input_pricing_slider, output_pricing_slider, multimodal_checkbox,
             context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
            [leaderboard_table],   
            queue=True
        )

        parameter_slider.change(
            filter,
            [dummy_leaderboard_table, lang_dropdown, parameter_slider,
             input_pricing_slider, output_pricing_slider, multimodal_checkbox,
             context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
            [leaderboard_table],
            queue=True
        )

        input_pricing_slider.change(
            filter,
            [dummy_leaderboard_table, lang_dropdown, parameter_slider,
             input_pricing_slider, output_pricing_slider, multimodal_checkbox,
             context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
            [leaderboard_table],
            queue=True
        )

        output_pricing_slider.change(
            filter,
            [dummy_leaderboard_table, lang_dropdown, parameter_slider,
             input_pricing_slider, output_pricing_slider, multimodal_checkbox,
             context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
            [leaderboard_table],
            queue=True
        )

        multimodal_checkbox.change(
            filter,
            [dummy_leaderboard_table, lang_dropdown, parameter_slider,
             input_pricing_slider, output_pricing_slider, multimodal_checkbox,
             context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
            [leaderboard_table],
            queue=True
        )

        open_weight_checkbox.change(
            filter,
            [dummy_leaderboard_table, lang_dropdown, parameter_slider,
             input_pricing_slider, output_pricing_slider, multimodal_checkbox,
             context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
            [leaderboard_table],
            queue=True
        )

        context_slider.change(
            filter,
            [dummy_leaderboard_table, lang_dropdown, parameter_slider,
             input_pricing_slider, output_pricing_slider, multimodal_checkbox,
             context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
            [leaderboard_table],
            queue=True
        )

        start_date.change(
            filter,
            [dummy_leaderboard_table, lang_dropdown, parameter_slider,
             input_pricing_slider, output_pricing_slider, multimodal_checkbox,
             context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
            [leaderboard_table],
            queue=True
        )

        end_date.change(
            filter,
            [dummy_leaderboard_table, lang_dropdown, parameter_slider,
             input_pricing_slider, output_pricing_slider, multimodal_checkbox,
             context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
            [leaderboard_table],
            queue=True
        )

        license_checkbox.change(
            filter,
            [dummy_leaderboard_table, lang_dropdown, parameter_slider,
             input_pricing_slider, output_pricing_slider, multimodal_checkbox,
             context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
            [leaderboard_table],
            queue=True
        )

    llm_calc_app.load()
llm_calc_app.queue()
llm_calc_app.launch()



"""
model_name, input_price, output_price,
multimodality_image,multimodality_multiple_image,multimodality_audio,multimodality_video,
source,licence_name,licence_url,languages,release_date,
parameters_estimated,parameters_actual,

open_weight,context, 

additional_prices_context_caching,
additional_prices_context_storage,
additional_prices_image_input,additional_prices_image_output,additional_prices_video_input,additional_prices_video_output,additional_prices_audio_input,additional_prices_audio_output,clemscore_v1.6.5_multimodal,clemscore_v1.6.5_ascii,clemscore_v1.6,latency_v1.6,latency_v1.6.5_multimodal,latency_v1.6.5_ascii,

average_clemscore,average_latency,parameters

Final list

model_name, input_price, output_price,
multimodality_image,multimodality_multiple_image,multimodality_audio,multimodality_video,
source,licence_name,licence_url,languages,release_date, open_weight,context, average_clemscore,average_latency,parameters


Filter
multimodality_image,multimodality_multiple_image,multimodality_audio,multimodality_video,
licence_name+licence_url, languages, release_date, open_weight

RR
model_name, input_price, output_price,
source, release_date

"""