File size: 10,436 Bytes
3cdae16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d0c4ea
 
3cdae16
4d0c4ea
3cdae16
 
 
 
 
 
4d0c4ea
 
 
3cdae16
4d0c4ea
 
3cdae16
 
 
4d0c4ea
3cdae16
 
 
 
 
 
 
 
 
 
 
4d0c4ea
 
3cdae16
4d0c4ea
3cdae16
4d0c4ea
3cdae16
 
4d0c4ea
 
3cdae16
 
4d0c4ea
3cdae16
 
 
 
 
4d0c4ea
 
 
 
3cdae16
4d0c4ea
3cdae16
4d0c4ea
3cdae16
4d0c4ea
3cdae16
4d0c4ea
3cdae16
4d0c4ea
 
 
 
 
 
 
 
3cdae16
4d0c4ea
 
 
 
 
 
 
 
3cdae16
 
4d0c4ea
 
 
 
 
3cdae16
4d0c4ea
3cdae16
 
 
 
 
4d0c4ea
3cdae16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d0c4ea
3cdae16
 
4d0c4ea
3cdae16
 
4d0c4ea
3cdae16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d0c4ea
3cdae16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d0c4ea
3cdae16
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import gradio as gr
import numpy as np
import spaces
import torch
import random
import json
import os
from PIL import Image
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard
from safetensors.torch import load_file
import requests
import re

# Load Kontext model
MAX_SEED = np.iinfo(np.int32).max

pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")

# Load LoRA data from our custom JSON file
with open("kontext_loras.json", "r") as file:
    data = json.load(file)
    # Add default values for keys that might be missing, to prevent errors
    flux_loras_raw = [
        {
            "image": item["image"],
            "title": item["title"],
            "repo": item["repo"],
            "weights": item.get("weights", "pytorch_lora_weights.safetensors"),
            # The following keys are kept for compatibility with the original demo structure,
            # but our simplified logic doesn't heavily rely on them.
            "trigger_word": item.get("trigger_word", ""),
            "lora_type": item.get("lora_type", "flux"),
            "lora_scale_config": item.get("lora_scale", 1.0), # Default scale set to 1.0
            "prompt_placeholder": item.get("prompt_placeholder", "Describe the subject..."),
        }
        for item in data
    ]
print(f"Loaded {len(flux_loras_raw)} LoRAs from kontext_loras.json")

def update_selection(selected_state: gr.SelectData, flux_loras):
    """Update UI when a LoRA is selected"""
    if selected_state.index >= len(flux_loras):
        return "### No LoRA selected", gr.update(), None, gr.update()
    
    lora_repo = flux_loras[selected_state.index]["repo"]
    
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})"
    config_placeholder = flux_loras[selected_state.index]["prompt_placeholder"]

    optimal_scale = flux_loras[selected_state.index].get("lora_scale_config", 1.0)
    print("Selected Style: ", flux_loras[selected_state.index]['title'])
    print("Optimal Scale: ", optimal_scale)
    return updated_text, gr.update(placeholder=config_placeholder), selected_state.index, optimal_scale

# This wrapper is kept for compatibility with the Gradio event triggers
def infer_with_lora_wrapper(input_image, prompt, selected_index, lora_state, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.75,portrait_mode=False, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
    """Wrapper function to handle state serialization"""
    # The 'custom_lora' and 'lora_state' arguments are no longer used but kept in the signature
    return infer_with_lora(input_image, prompt, selected_index, seed, randomize_seed, guidance_scale, lora_scale, portrait_mode, flux_loras, progress)

@spaces.GPU
def infer_with_lora(input_image, prompt, selected_index, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, portrait_mode=False, flux_loras=None,  progress=gr.Progress(track_tqdm=True)):
    """Generate image with selected LoRA"""
    global pipe
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    # Unload any previous LoRA to ensure a clean state
    if "selected_lora" in pipe.get_active_adapters():
        pipe.unload_lora_weights()
    
    # Determine which LoRA to use from our gallery
    lora_to_use = None
    if selected_index is not None and flux_loras and selected_index < len(flux_loras):
        lora_to_use = flux_loras[selected_index]
    
    if lora_to_use:
        print(f"Applying LoRA: {lora_to_use['title']}")
        try:
            # Load LoRA directly from the Hugging Face Hub
            pipe.load_lora_weights(
                lora_to_use["repo"], 
                weight_name=lora_to_use["weights"], 
                adapter_name="selected_lora"
            )
            pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale])
            print(f"Loaded {lora_to_use['repo']} with scale {lora_scale}")
            
            # Simplified and direct prompt construction
            style_name = lora_to_use['title']
            if prompt:
                final_prompt = f"Turn this image of {prompt} into {style_name} style."
            else:
                final_prompt = f"Turn this image into {style_name} style."
            print(f"Using prompt: {final_prompt}")

        except Exception as e:
            print(f"Error loading LoRA: {e}")
            final_prompt = prompt # Fallback to user prompt if LoRA fails
    else:
        # No LoRA selected, just use the original prompt
        final_prompt = prompt

    input_image = input_image.convert("RGB")
    
    try:
        image = pipe(
            image=input_image,
            width=input_image.size[0],
            height=input_image.size[1],
            prompt=final_prompt,
            guidance_scale=guidance_scale,
            generator=torch.Generator().manual_seed(seed)
        ).images[0]
        
        return image, seed, gr.update(visible=True), lora_scale
    
    except Exception as e:
        print(f"Error during inference: {e}")
        return None, seed, gr.update(visible=False), lora_scale

# CSS styling
css = """
#main_app {
    display: flex;
    gap: 20px;
}
#box_column {
    min-width: 400px;
}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}  
#selected_lora {
    color: #2563eb;
    font-weight: bold;
}
#prompt {
    flex-grow: 1;
}
#run_button {
    background: linear-gradient(45deg, #2563eb, #3b82f6);
    color: white;
    border: none;
    padding: 8px 16px;
    border-radius: 6px;
    font-weight: bold;
}
.custom_lora_card {
    background: #f8fafc;
    border: 1px solid #e2e8f0;
    border-radius: 8px;
    padding: 12px;
    margin: 8px 0;
}
#gallery{
    overflow: scroll !important
}
"""

# Create Gradio interface
with gr.Blocks(css=css, theme=gr.themes.Ocean(font=[gr.themes.GoogleFont("Lexend Deca"), "sans-serif"])) as demo:
    gr_flux_loras = gr.State(value=flux_loras_raw)
    
    title = gr.HTML(
        """<h1><img src="https://huggingface.co/spaces/kontext-community/FLUX.1-Kontext-portrait/resolve/main/dora_kontext.png" alt="LoRA"> Kontext-Style LoRA Explorer</h1>""",
        elem_id="title",
    )
    gr.Markdown("A demo for the style LoRAs from the [Kontext-Style Collection](https://huggingface.co/Kontext-Style) 🤗")
    
    selected_state = gr.State(value=None)
    # The following states are no longer used by the simplified logic but kept for component structure
    custom_loaded_lora = gr.State(value=None)
    lora_state = gr.State(value=1.0)
    
    with gr.Row(elem_id="main_app"):
        with gr.Column(scale=4, elem_id="box_column"):
            with gr.Group(elem_id="gallery_box"):
                input_image = gr.Image(label="Upload a picture of yourself", type="pil", height=300)
                portrait_mode = gr.Checkbox(label="portrait mode", value=True)
                gallery = gr.Gallery(
                    label="Pick a LoRA",
                    allow_preview=False,
                    columns=3,
                    elem_id="gallery",
                    show_share_button=False,
                    height=400
                )
                
                custom_model = gr.Textbox(
                    label="Or enter a custom HuggingFace FLUX LoRA", 
                    placeholder="e.g., username/lora-name",
                    visible=False
                )
                custom_model_card = gr.HTML(visible=False)
                custom_model_button = gr.Button("Remove custom LoRA", visible=False)
        
        with gr.Column(scale=5):
            with gr.Row():
                prompt = gr.Textbox(
                    label="Editing Prompt",
                    show_label=False,
                    lines=1,
                    max_lines=1,
                    placeholder="opt - describe the person/subject, e.g. 'a man with glasses and a beard'",
                    elem_id="prompt"
                )
                run_button = gr.Button("Generate", elem_id="run_button")
            
            result = gr.Image(label="Generated Image", interactive=False)
            reuse_button = gr.Button("Reuse this image", visible=False)
            
            with gr.Accordion("Advanced Settings", open=False):
                lora_scale = gr.Slider(
                    label="LoRA Scale",
                    minimum=0,
                    maximum=2,
                    step=0.1,
                    value=1.5,
                    info="Controls the strength of the LoRA effect"
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=10,
                    step=0.1,
                    value=2.5,
                )
            
            prompt_title = gr.Markdown(
                value="### Click on a LoRA in the gallery to select it",
                visible=True,
                elem_id="selected_lora",
            )

    # Event handlers
    # The custom model inputs are no longer needed as we've hidden them.
    
    gallery.select(
        fn=update_selection,
        inputs=[gr_flux_loras],
        outputs=[prompt_title, prompt, selected_state, lora_scale],
        show_progress=False
    )
    
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer_with_lora_wrapper,
        inputs=[input_image, prompt, selected_state, lora_state, custom_loaded_lora, seed, randomize_seed, guidance_scale, lora_scale, portrait_mode, gr_flux_loras],
        outputs=[result, seed, reuse_button, lora_state]
    )
    
    reuse_button.click(
        fn=lambda image: image,
        inputs=[result],
        outputs=[input_image]
    )
    
    # Initialize gallery
    demo.load(
        fn=lambda: (flux_loras_raw, flux_loras_raw), 
        outputs=[gallery, gr_flux_loras]
    )

demo.queue(default_concurrency_limit=None)
demo.launch()