|
from langchain_openai import OpenAI |
|
from pypdf import PdfReader |
|
import pandas as pd |
|
import re |
|
import replicate |
|
from langchain.prompts import PromptTemplate |
|
|
|
|
|
def get_pdf_text(pdf_doc): |
|
text = '' |
|
pdf_reader = PdfReader(pdf_doc) |
|
for page in pdf_reader.pages: |
|
text += page.extract_text() |
|
return text |
|
|
|
|
|
def extracted_data(pages_data): |
|
template = """Extract all the following values : invoice no. Description, Quantinty, data, Unit price, Amount, Total |
|
email, phone number and address from this data: {pages} |
|
|
|
Expected output: remove any dollar symbols {{'Invoice no.': '1001329', 'Description': 'Office Chair', 'Quantity': '2', 'Date': '5/4/2018', 'Unit price': '100', 'Amount': '20', 'Total': '12020' and so on}}""" |
|
|
|
prompt_template = PromptTemplate(input_variables=["pages"], template=template) |
|
|
|
llm = OpenAI(temperature=.7) |
|
full_response = llm(prompt_template.format(pages=pages_data)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return full_response |
|
|
|
|
|
def create_docs(user_pdf_list): |
|
"""Iterate over files in that user uploaded PDF files, one by one""" |
|
print("Started creating docs") |
|
df = pd.DataFrame({"Invoice no.": pd.Series(dtype='str'), |
|
"Description": pd.Series(dtype='str'), |
|
"Quantinty": pd.Series(dtype='str'), |
|
"Date": pd.Series(dtype='str'), |
|
"Unit price": pd.Series(dtype='str'), |
|
"Amount": pd.Series(dtype='int'), |
|
"Total": pd.Series(dtype='str'), |
|
"Email": pd.Series(dtype='str'), |
|
"Phone number": pd.Series(dtype='str'), |
|
"Address": pd.Series(dtype='str')}) |
|
|
|
for filename in user_pdf_list: |
|
print('filename is {}'.format(filename)) |
|
raw_data = get_pdf_text(filename) |
|
print('raw_data is {}'.format(raw_data)) |
|
|
|
llm_extracted_data = extracted_data(raw_data) |
|
print('llm_extracted_data is {}'.format(llm_extracted_data)) |
|
|
|
|
|
pattern = r'{(.+)}' |
|
match = re.search(pattern, llm_extracted_data, re.DOTALL) |
|
|
|
if match: |
|
extracted_text = match.group(1) |
|
|
|
data_dict = eval('{' + extracted_text + '}') |
|
print('data_dict is {}'.format(data_dict)) |
|
else: |
|
print("No match found.") |
|
new_row = pd.DataFrame([data_dict]) |
|
df = pd.concat([df, new_row], ignore_index=True) |
|
print('*' * 10 + 'DONE' + '*' * 10) |
|
|
|
df.head() |
|
return df |
|
|