Spaces:
Runtime error
Runtime error
File size: 4,011 Bytes
08e38f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
# import the library
import pandas as pd
import numpy as np
import seaborn as sns
from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.impute import KNNImputer
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
#libraries for model evaluation
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score
from sklearn.metrics import plot_confusion_matrix
from sklearn.metrics import classification_report
import warnings
warnings.filterwarnings('ignore')
# read the dataset
df = pd.read_csv('heart.csv')
# get categorical columns
categorical_cols= df.select_dtypes(include=['object'])
# get count of unique values for categorical columns
for cols in categorical_cols.columns:
print(cols,':', len(categorical_cols[cols].unique()),'labels')
# categorical columns
cat_col = categorical_cols.columns
# numerical column
num_col = ['Age','RestingBP','Cholesterol','FastingBS','MaxHR','Oldpeak']
# define X and y
X = df.drop(['HeartDisease'],axis=1)
y = df['HeartDisease']
# create a pipeline for preprocessing the dataset
num_pipeline = Pipeline([
('imputer', KNNImputer(n_neighbors=5)),
('std_scaler', StandardScaler()),
])
num_attribs = num_col
cat_attribs = cat_col
# apply transformation to the numerical and categorical columns
full_pipeline = ColumnTransformer([
("num", num_pipeline, num_attribs),
("cat", OneHotEncoder(), cat_attribs),
])
X = full_pipeline.fit_transform(X)
# save preprocessed data
temp_df = pd.DataFrame(X)
temp_df.to_csv('processed_data.csv')
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)
# count plot for number of heart disease(1)/No heart disease(0)
import seaborn as sns
sns.countplot(y_train,palette='OrRd')
# create a fresh model based on tuned parameters
rfc1=RandomForestClassifier(random_state=42, max_features='sqrt', n_estimators= 50, max_depth=7, criterion='gini')
rfc1.fit(X_train, y_train)
# Predicting the Test set results
y_pred = rfc1.predict(X_test)
print('Random forest accuracy_score:',accuracy_score(y_test,y_pred))
# Save the Model
import pickle
# save the random forest model for future use
pickle.dump(rfc1, open('rfc.pickle', 'wb'))
# save the preprocessing pipeline
pickle.dump(full_pipeline, open('full_pipeline.pickle', 'wb'))
# Load the Models for future use
rfc_saved = pickle.load(open('rfc.pickle','rb'))
full_pipeline_saved = pickle.load(open('full_pipeline.pickle','rb'))
# Visualization
target = df['HeartDisease'].replace([0,1],['Low','High'])
data = pd.crosstab(index=df['Sex'],
columns=target)
data.plot(kind='bar',stacked=True)
plt.show()
plt.figure(figsize=(10,5))
bins=[0,30,50,80]
sns.countplot(x=pd.cut(df.Age,bins=bins),hue=target,color='r')
plt.show()
plt.figure(figsize=(10,5))
sns.countplot(x=target,hue=df.ChestPainType)
plt.xticks(np.arange(2), ['No', 'Yes'])
plt.show()
plt.figure(figsize=(10,5))
sns.countplot(x=target,hue=df.ExerciseAngina)
plt.xticks(np.arange(2), ['No', 'Yes'])
plt.show()
# feature importance
# get important features used by model
importances = rfc1.feature_importances_
feature_names = num_col
for i in cat_col:
feature_names = feature_names + [i]*df[i].nunique()
import pandas as pd
forest_importances = pd.Series(importances, index=feature_names)
forest_importances = forest_importances.groupby(level=0).first().sort_values(ascending=False)
# plot the features based on their importance in model performance.
fig, ax = plt.subplots()
forest_importances.plot.bar()
ax.set_title("Feature importances using MDI")
ax.set_ylabel("Mean decrease in impurity")
fig.tight_layout() |