import torch # Recover global angle and positions for rotation data # root_rot_velocity (B, seq_len, 1) # root_linear_velocity (B, seq_len, 2) # root_y (B, seq_len, 1) # ric_data (B, seq_len, (joint_num - 1)*3) # rot_data (B, seq_len, (joint_num - 1)*6) # local_velocity (B, seq_len, joint_num*3) # foot contact (B, seq_len, 4) import numpy as np from SMPLX.rotation_conversions import * def qinv(q): assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)' mask = torch.ones_like(q) mask[..., 1:] = -mask[..., 1:] return q * mask def qrot(q, v): """ Rotate vector(s) v about the rotation described by quaternion(s) q. Expects a tensor of shape (*, 4) for q and a tensor of shape (*, 3) for v, where * denotes any number of dimensions. Returns a tensor of shape (*, 3). """ assert q.shape[-1] == 4 assert v.shape[-1] == 3 assert q.shape[:-1] == v.shape[:-1] original_shape = list(v.shape) # print(q.shape) q = q.contiguous().view(-1, 4) v = v.contiguous().view(-1, 3) qvec = q[:, 1:] uv = torch.cross(qvec, v, dim=1) uuv = torch.cross(qvec, uv, dim=1) return (v + 2 * (q[:, :1] * uv + uuv)).view(original_shape) def recover_root_rot_pos(data): rot_vel = data[..., 0] r_rot_ang = torch.zeros_like(rot_vel).to(data.device) '''Get Y-axis rotation from rotation velocity''' r_rot_ang[..., 1:] = rot_vel[..., :-1] r_rot_ang = torch.cumsum(r_rot_ang, dim=-1) r_rot_quat = torch.zeros(data.shape[:-1] + (4,)).to(data.device) r_rot_quat[..., 0] = torch.cos(r_rot_ang) r_rot_quat[..., 2] = torch.sin(r_rot_ang) r_pos = torch.zeros(data.shape[:-1] + (3,)).to(data.device) r_pos[..., 1:, [0, 2]] = data[..., :-1, 1:3] '''Add Y-axis rotation to root position''' r_pos = qrot(qinv(r_rot_quat), r_pos) r_pos = torch.cumsum(r_pos, dim=-2) r_pos[..., 1] = data[..., 3] return r_rot_quat, r_pos def quaternion_to_matrix(quaternions): """ Convert rotations given as quaternions to rotation matrices. Args: quaternions: quaternions with real part first, as tensor of shape (..., 4). Returns: Rotation matrices as tensor of shape (..., 3, 3). """ r, i, j, k = torch.unbind(quaternions, -1) two_s = 2.0 / (quaternions * quaternions).sum(-1) o = torch.stack( ( 1 - two_s * (j * j + k * k), two_s * (i * j - k * r), two_s * (i * k + j * r), two_s * (i * j + k * r), 1 - two_s * (i * i + k * k), two_s * (j * k - i * r), two_s * (i * k - j * r), two_s * (j * k + i * r), 1 - two_s * (i * i + j * j), ), -1, ) return o.reshape(quaternions.shape[:-1] + (3, 3)) def quaternion_to_cont6d(quaternions): rotation_mat = quaternion_to_matrix(quaternions) cont_6d = torch.cat([rotation_mat[..., 0], rotation_mat[..., 1]], dim=-1) return cont_6d def recover_from_rot(data, joints_num, skeleton): r_rot_quat, r_pos = recover_root_rot_pos(data) r_rot_cont6d = quaternion_to_cont6d(r_rot_quat) start_indx = 1 + 2 + 1 + (joints_num - 1) * 3 end_indx = start_indx + (joints_num - 1) * 6 cont6d_params = data[..., start_indx:end_indx] # print(r_rot_cont6d.shape, cont6d_params.shape, r_pos.shape) cont6d_params = torch.cat([r_rot_cont6d, cont6d_params], dim=-1) cont6d_params = cont6d_params.view(-1, joints_num, 6) positions = skeleton.forward_kinematics_cont6d(cont6d_params, r_pos) return positions def recover_from_ric(data, joints_num): if isinstance(data, np.ndarray): data = torch.from_numpy(data).float() dtype = "numpy" else: data = data.float() dtype = "tensor" r_rot_quat, r_pos = recover_root_rot_pos(data) positions = data[..., 4:(joints_num - 1) * 3 + 4] positions = positions.view(positions.shape[:-1] + (-1, 3)) '''Add Y-axis rotation to local joints''' positions = qrot(qinv(r_rot_quat[..., None, :]).expand(positions.shape[:-1] + (4,)), positions) '''Add root XZ to joints''' positions[..., 0] += r_pos[..., 0:1] positions[..., 2] += r_pos[..., 2:3] '''Concate root and joints''' positions = torch.cat([r_pos.unsqueeze(-2), positions], dim=-2) if dtype == "numpy": positions = positions.numpy() return positions def t2m_to_eval_rep(data, joint_num=22): bs, nframes, length = data.shape if isinstance(data, np.ndarray): data = torch.from_numpy(data).float() elif isinstance(data, torch.Tensor): data = data.float() joints = recover_from_ric(data, joint_num) translation = joints[:, :, 0, :] - joints[:, 0:1, 0, :] ### [bs, nframes, 3] joints -= translation.unsqueeze(2) joints = torch.cat([translation.unsqueeze(2), joints], dim=2) #### [bs, nframes, 23, 3] data = joints.reshape(bs, nframes, -1).cpu().numpy() return data def recover_pose_from_t2m(data, njoints=22): joints = recover_from_ric(data, njoints) trans = joints[:, 0, :] - joints[0:1, 0, :] pose = data[:, 4 + (njoints - 1) * 3:4 + (njoints - 1) * 9] pose = pose.reshape(pose.shape[0], njoints-1, 6) ptype = type(pose) if ptype == np.ndarray: pose = torch.from_numpy(pose).float() pose = rotation_6d_to_matrix(pose) pose = matrix_to_axis_angle(pose) pose = pose.numpy() root_vel = np.zeros([pose.shape[0], 1, 3]) pose = np.concatenate([root_vel, pose], axis=1) elif ptype == torch.Tensor: pose = rotation_6d_to_matrix(pose) pose = matrix_to_axis_angle(pose) root_vel = torch.zeros([pose.shape[0], 1, 3]) pose = torch.cat([root_vel, pose], dim=1) pose = pose.reshape(pose.shape[0], -1) if njoints < 24: if ptype == np.ndarray: addition = np.zeros([pose.shape[0], 72-njoints*3]) pose = np.concatenate([pose, addition], axis=1) elif ptype == torch.Tensor: addition = torch.zeros([pose.shape[0], 72-njoints*3], dtype=pose.dtype, device=pose.device) pose = torch.cat([pose, addition], dim=1) if ptype == np.ndarray: pose = np.concatenate([pose, trans], axis=1) elif ptype == torch.Tensor: pose = torch.cat([pose, trans], dim=1) return pose