import torch from motion.visual_api import Visualize import moviepy.editor as mpy import os, sys import time import json import imageio import argparse def interface(prompt, mode="cadm", render_mode="pyrender", out_size=1024, tada_role=None): os.makedirs("results/motion", exist_ok=True) os.makedirs("results/joints", exist_ok=True) os.makedirs("results/smpls", exist_ok=True) name = prompt.replace("/", "_").replace(" ", "_").replace(",", "_").replace("#", "_").replace("|", "_").replace(".npy", "").replace(".txt", "").replace(".csv", "").replace(".", "").replace("'", "_") name = "_".join(name.split("_")[:25]) out_path = os.path.join("results/motion", name + ".mp4") gif_path = os.path.join("results/motion", name + ".gif") joint_path = os.path.join("results/joints", name + ".npy") smpl_path = os.path.join("results/smpls", name + ".npy") ''' prompt 输入为 length, prompt, 如果只输入 prompt, length 默认为 196 mode 指不同的模型 ''' assert mode in ["cadm", "cadm-augment", "mdm"] assert render_mode in ["joints", "pyrender_fast", "pyrender_slow"] path = None with open("motion/path.json", "r") as f: json_dict = json.load(f) t1 = time.time() kargs = { "mode":mode, "device":"cuda" if torch.cuda.is_available() else "cpu", "rotate":0, "condition":"text", "smpl_path":json_dict["smpl_path"], "skip_steps":0, "path":json_dict, "tada_base":json_dict["tada_base"], "tada_role":tada_role } visual = Visualize(**kargs) t2 = time.time() output = visual.predict(prompt, path, render_mode, joint_path, smpl_path) t3 = time.time() if render_mode == "joints": pics = visual.joints_process(output, prompt, out_size, out_size) elif render_mode.startswith("pyrender"): meshes, _ = visual.get_mesh(output) pics = visual.pyrender_process(meshes, out_size, out_size) vid = mpy.ImageSequenceClip([x[:, :, :] for x in pics], fps=20) vid.write_videofile(out_path, remove_temp=True) imageio.mimsave(gif_path, pics, duration= 1000 / 20, loop=0) t4 = time.time() cost_init = t2 - t1 cost_infer = t3 - t2 cost_render = t4 - t3 print("initial model cost time: %.4f, infer and fit cost time: %.4f, render cost time: %.4f, total cost time: %.4f"%(cost_init, cost_infer, cost_render, t4 - t1)) return out_path if __name__ == "__main__": parser = argparse.ArgumentParser(description='visualize demo') ############################ basic_setings ######################## parser.add_argument('--prompt', type=str, default="120, A person walks forward and does a handstand.") parser.add_argument('--mode', type=str, default="cadm", choices=['cadm', 'cadm-augment', "mdm"], help="choose model") parser.add_argument("--render_mode", default="pyrender_slow", type=str, choices=["pyrender_slow", "pyrender_fast", "joints"]) parser.add_argument("--size", default=1024, type=int) parser.add_argument("--tada_role", default=None, type=str) opt = parser.parse_args() out_path = interface(opt.prompt, mode=opt.mode, render_mode=opt.render_mode, out_size=opt.size, tada_role=opt.tada_role)