import numpy as np import os import torch from SMPLX import smplx import h5py from SMPLX.visualize_joint2smpl.joints2smpl.src.smplify import SMPLify3D from tqdm import tqdm import argparse class joints2smpl: def __init__(self, num_frames, device, model_path=None, json_dict=None): self.smpl_dir = model_path self.device = device # self.device = torch.device("cpu") self.batch_size = num_frames self.num_joints = 22 # for HumanML3D self.joint_category = "AMASS" self.num_smplify_iters = 100 self.fix_foot = False smplmodel = smplx.create(self.smpl_dir, model_type="smpl", gender="neutral", ext="pkl", batch_size=self.batch_size).to(self.device) # ## --- load the mean pose as original ---- smpl_mean_file = os.path.join(json_dict["joints2smpl"], "neutral_smpl_mean_params.h5") file = h5py.File(smpl_mean_file, 'r') self.init_mean_pose = torch.from_numpy(file['pose'][:]).unsqueeze(0).repeat(self.batch_size, 1).float().to(self.device) self.init_mean_shape = torch.from_numpy(file['shape'][:]).unsqueeze(0).repeat(self.batch_size, 1).float().to(self.device) self.cam_trans_zero = torch.Tensor([0.0, 0.0, 0.0]).unsqueeze(0).to(self.device) # # # #-------------initialize SMPLify self.smplify = SMPLify3D(smplxmodel=smplmodel, batch_size=self.batch_size, joints_category=self.joint_category, num_iters=self.num_smplify_iters, device=self.device) def npy2smpl(self, npy_path): out_path = npy_path.replace('.npy', '_rot.npy') motions = np.load(npy_path, allow_pickle=True)[None][0] # print_batch('', motions) n_samples = motions['motion'].shape[0] all_thetas = [] for sample_i in tqdm(range(n_samples)): thetas, _ = self.joint2smpl(motions['motion'][sample_i].transpose(2, 0, 1)) # [nframes, njoints, 3] all_thetas.append(thetas.cpu().numpy()) motions['motion'] = np.concatenate(all_thetas, axis=0) print('motions', motions['motion'].shape) print(f'Saving [{out_path}]') np.save(out_path, motions) exit() def joint2smpl(self, input_joints, init_params=None): if len(input_joints.shape) == 2: input_joints = input_joints.reshape(input_joints.shape[0], -1, 3) pred_pose = torch.zeros(self.batch_size, 72).to(self.device) pred_betas = torch.zeros(self.batch_size, 10).to(self.device) pred_cam_t = torch.zeros(self.batch_size, 3).to(self.device) keypoints_3d = torch.zeros(self.batch_size, self.num_joints, 3).to(self.device) # joints3d = input_joints[idx] # *1.2 #scale problem [check first] keypoints_3d = torch.Tensor(input_joints).to(self.device).float() root_loc = torch.tensor(keypoints_3d[:, 0:1]) #### N * 1 * 3 root_loc = root_loc - root_loc[[0], :, :] ### N * 1 * 3 root_loc = root_loc.squeeze(1).detach().cpu().numpy() # if idx == 0: if init_params is None: pred_betas = self.init_mean_shape pred_pose = self.init_mean_pose pred_cam_t = self.cam_trans_zero else: pred_betas = init_params['betas'] pred_pose = init_params['pose'] pred_cam_t = init_params['cam'] if self.joint_category == "AMASS": confidence_input = torch.ones(self.num_joints) # make sure the foot and ankle if self.fix_foot == True: confidence_input[7] = 1.5 confidence_input[8] = 1.5 confidence_input[10] = 1.5 confidence_input[11] = 1.5 else: print("Such category not settle down!") new_opt_vertices, new_opt_joints, new_opt_pose, new_opt_betas, \ new_opt_cam_t, new_opt_joint_loss = self.smplify( pred_pose.detach(), pred_betas.detach(), pred_cam_t.detach(), keypoints_3d, conf_3d=confidence_input.to(self.device), # seq_ind=idx ) thetas = new_opt_pose.reshape(self.batch_size, 24 * 3) vecs = thetas.detach().cpu().numpy() return vecs, root_loc if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--input_path", type=str, required=True, help='Blender file or dir with blender files') parser.add_argument("--cuda", type=bool, default=True, help='') parser.add_argument("--device", type=int, default=0, help='') params = parser.parse_args() simplify = joints2smpl(device_id=params.device, cuda=params.cuda) if os.path.isfile(params.input_path) and params.input_path.endswith('.npy'): simplify.npy2smpl(params.input_path) elif os.path.isdir(params.input_path): files = [os.path.join(params.input_path, f) for f in os.listdir(params.input_path) if f.endswith('.npy')] for f in files: simplify.npy2smpl(f)