import numpy as np import torch from SMPLX.rotation_conversions import rotation_6d_to_matrix, matrix_to_axis_angle def qinv(q): assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)' mask = torch.ones_like(q) mask[..., 1:] = -mask[..., 1:] return q * mask def qrot(q, v): """ Rotate vector(s) v about the rotation described by quaternion(s) q. Expects a tensor of shape (*, 4) for q and a tensor of shape (*, 3) for v, where * denotes any number of dimensions. Returns a tensor of shape (*, 3). """ assert q.shape[-1] == 4 assert v.shape[-1] == 3 assert q.shape[:-1] == v.shape[:-1] original_shape = list(v.shape) # print(q.shape) q = q.contiguous().view(-1, 4) v = v.contiguous().view(-1, 3) qvec = q[:, 1:] uv = torch.cross(qvec, v, dim=1) uuv = torch.cross(qvec, uv, dim=1) return (v + 2 * (q[:, :1] * uv + uuv)).view(original_shape) def recover_root_rot_pos(data): rot_vel = data[..., 0] r_rot_ang = torch.zeros_like(rot_vel).to(data.device) '''Get Y-axis rotation from rotation velocity''' r_rot_ang[..., 1:] = rot_vel[..., :-1] r_rot_ang = torch.cumsum(r_rot_ang, dim=-1) r_rot_quat = torch.zeros(data.shape[:-1] + (4,)).to(data.device) r_rot_quat[..., 0] = torch.cos(r_rot_ang) r_rot_quat[..., 2] = torch.sin(r_rot_ang) r_pos = torch.zeros(data.shape[:-1] + (3,)).to(data.device) r_pos[..., 1:, [0, 2]] = data[..., :-1, 1:3] '''Add Y-axis rotation to root position''' r_pos = qrot(qinv(r_rot_quat), r_pos) r_pos = torch.cumsum(r_pos, dim=-2) r_pos[..., 1] = data[..., 3] return r_rot_quat, r_pos def recover_from_ric(data, joints_num): if isinstance(data, np.ndarray): data = torch.from_numpy(data).float() dtype = "numpy" else: data = data.float() dtype = "tensor" r_rot_quat, r_pos = recover_root_rot_pos(data) positions = data[..., 4:(joints_num - 1) * 3 + 4] positions = positions.view(positions.shape[:-1] + (-1, 3)) '''Add Y-axis rotation to local joints''' positions = qrot(qinv(r_rot_quat[..., None, :]).expand(positions.shape[:-1] + (4,)), positions) '''Add root XZ to joints''' positions[..., 0] += r_pos[..., 0:1] positions[..., 2] += r_pos[..., 2:3] '''Concate root and joints''' positions = torch.cat([r_pos.unsqueeze(-2), positions], dim=-2) if dtype == "numpy": positions = positions.numpy() return positions def recover_pose_from_smr(data, njoints=22): joints = recover_from_ric(data, njoints) trans = joints[:, 0, :] - joints[0:1, 0, :] pose = data[:, 4 + (njoints - 1) * 3:10 + (njoints - 1) * 9] pose = pose.reshape(pose.shape[0], njoints, 6) ptype = type(pose) if ptype == np.ndarray: pose = torch.from_numpy(pose).float() pose = rotation_6d_to_matrix(pose) pose = matrix_to_axis_angle(pose) pose = pose.numpy() elif ptype == torch.Tensor: pose = rotation_6d_to_matrix(pose) pose = matrix_to_axis_angle(pose) pose = pose.reshape(pose.shape[0], -1) if njoints < 24: if ptype == np.ndarray: addition = np.zeros([pose.shape[0], 72-njoints*3]) pose = np.concatenate([pose, addition], axis=1) elif ptype == torch.Tensor: addition = torch.zeros([pose.shape[0], 72-njoints*3], dtype=pose.dtype, device=pose.device) pose = torch.cat([pose, addition], dim=1) if ptype == np.ndarray: pose = np.concatenate([pose, trans], axis=1) elif ptype == torch.Tensor: pose = torch.cat([pose, trans], dim=1) return pose