Spaces:
Runtime error
Runtime error
from motion.model.mdm import MDM | |
from motion.diffusion import gaussian_diffusion as gd | |
from motion.diffusion.respace import SpacedDiffusion, space_timesteps, InpaintingGaussianDiffusion | |
def load_model_wo_clip(model, state_dict): | |
print("load model checkpoints without clip") | |
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) | |
print(unexpected_keys) | |
assert all([k.startswith('clip_model.') for k in missing_keys]) | |
def load_ft_model_wo_clip(model, state_dict): | |
print("load model checkpoints without clip") | |
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) | |
print(unexpected_keys) | |
# for name, value in model.named_parameters(): | |
# if "seqTransEncoder" in name and "self_attn" in name: | |
# value.requires_grad = False | |
# if name.startswith("code_full") or name.startswith("encode_compress") or name.startswith("input_process"): | |
# value.requires_grad = False | |
assert all([k.startswith('clip_pose_encoder.') for k in unexpected_keys]) | |
# assert all([k.startswith('clip_model.') or k.startswith('clip_pose_encoder.') or k.startswith('embed_text.') for k in missing_keys]) | |
def create_model_and_diffusion(args, mode="text", json_dict=None): | |
model = MDM(**get_model_args(args), json_dict=json_dict) | |
diffusion = create_gaussian_diffusion(args, mode) | |
return model, diffusion | |
def get_model_args(args): | |
# default args | |
clip_version = 'ViT-B/32' | |
if args.unconstrained: | |
cond_mode = 'no_cond' | |
elif args.dataset in ['kit', 'humanml']: | |
cond_mode = "text" | |
if args.arch in ["refined_encoder", "refined_decoder"]: | |
activation = "swiglu" | |
else: | |
activation = "gelu" | |
if args.dataset == 'humanml': | |
njoints = 263 | |
nfeats = 1 | |
elif args.dataset == 'kit': | |
njoints = 251 | |
nfeats = 1 | |
if args.rep == "smr": | |
njoints += 6 | |
nfeats = 1 | |
return {'njoints': njoints, 'nfeats': nfeats, 'latent_dim': args.latent_dim, 'ff_size': args.ff_size, 'num_layers': args.layers, 'num_heads': args.heads, | |
'dropout': 0.1, 'activation': activation, 'cond_mode': cond_mode, 'cond_mask_prob': args.cond_mask_prob, 'arch': args.arch, | |
'clip_version': clip_version, 'dataset': args.dataset, "local":args.local, "encode_full":args.encode_full, "txt_tokens":args.txt_tokens, | |
"num_frames":args.num_frames, "frame_mask":args.frame_mask} | |
def create_gaussian_diffusion(args, mode="text"): | |
# default params | |
predict_xstart = True # we always predict x_start (a.k.a. x0), that's our deal! | |
steps = 1000 | |
scale_beta = 1. # no scaling | |
timestep_respacing = '' # can be used for ddim sampling, we don't use it. | |
learn_sigma = False | |
rescale_timesteps = False | |
betas = gd.get_named_beta_schedule(args.noise_schedule, steps, scale_beta) | |
loss_type = gd.LossType.MSE | |
if not timestep_respacing: | |
timestep_respacing = [steps] | |
if mode is not None and (mode.startswith("finetune_control") or mode == "control_length"): | |
print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> inpainting diffusion model") | |
diffusion = InpaintingGaussianDiffusion | |
else: | |
print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SpacedDiffusion") | |
diffusion = SpacedDiffusion | |
return diffusion( | |
use_timesteps=space_timesteps(steps, timestep_respacing), | |
betas=betas, | |
model_mean_type=( | |
gd.ModelMeanType.EPSILON if not predict_xstart else gd.ModelMeanType.START_X | |
), | |
model_var_type=( | |
( | |
gd.ModelVarType.FIXED_LARGE | |
if not args.sigma_small | |
else gd.ModelVarType.FIXED_SMALL | |
) | |
if not learn_sigma | |
else gd.ModelVarType.LEARNED_RANGE | |
), | |
loss_type=loss_type, | |
rescale_timesteps=rescale_timesteps, | |
rep=args.rep | |
) |