Spaces:
Runtime error
Runtime error
import torch | |
# Recover global angle and positions for rotation data | |
# root_rot_velocity (B, seq_len, 1) | |
# root_linear_velocity (B, seq_len, 2) | |
# root_y (B, seq_len, 1) | |
# ric_data (B, seq_len, (joint_num - 1)*3) | |
# rot_data (B, seq_len, (joint_num - 1)*6) | |
# local_velocity (B, seq_len, joint_num*3) | |
# foot contact (B, seq_len, 4) | |
import numpy as np | |
from SMPLX.rotation_conversions import * | |
def qinv(q): | |
assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)' | |
mask = torch.ones_like(q) | |
mask[..., 1:] = -mask[..., 1:] | |
return q * mask | |
def qrot(q, v): | |
""" | |
Rotate vector(s) v about the rotation described by quaternion(s) q. | |
Expects a tensor of shape (*, 4) for q and a tensor of shape (*, 3) for v, | |
where * denotes any number of dimensions. | |
Returns a tensor of shape (*, 3). | |
""" | |
assert q.shape[-1] == 4 | |
assert v.shape[-1] == 3 | |
assert q.shape[:-1] == v.shape[:-1] | |
original_shape = list(v.shape) | |
# print(q.shape) | |
q = q.contiguous().view(-1, 4) | |
v = v.contiguous().view(-1, 3) | |
qvec = q[:, 1:] | |
uv = torch.cross(qvec, v, dim=1) | |
uuv = torch.cross(qvec, uv, dim=1) | |
return (v + 2 * (q[:, :1] * uv + uuv)).view(original_shape) | |
def recover_root_rot_pos(data): | |
rot_vel = data[..., 0] | |
r_rot_ang = torch.zeros_like(rot_vel).to(data.device) | |
'''Get Y-axis rotation from rotation velocity''' | |
r_rot_ang[..., 1:] = rot_vel[..., :-1] | |
r_rot_ang = torch.cumsum(r_rot_ang, dim=-1) | |
r_rot_quat = torch.zeros(data.shape[:-1] + (4,)).to(data.device) | |
r_rot_quat[..., 0] = torch.cos(r_rot_ang) | |
r_rot_quat[..., 2] = torch.sin(r_rot_ang) | |
r_pos = torch.zeros(data.shape[:-1] + (3,)).to(data.device) | |
r_pos[..., 1:, [0, 2]] = data[..., :-1, 1:3] | |
'''Add Y-axis rotation to root position''' | |
r_pos = qrot(qinv(r_rot_quat), r_pos) | |
r_pos = torch.cumsum(r_pos, dim=-2) | |
r_pos[..., 1] = data[..., 3] | |
return r_rot_quat, r_pos | |
def quaternion_to_matrix(quaternions): | |
""" | |
Convert rotations given as quaternions to rotation matrices. | |
Args: | |
quaternions: quaternions with real part first, | |
as tensor of shape (..., 4). | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
r, i, j, k = torch.unbind(quaternions, -1) | |
two_s = 2.0 / (quaternions * quaternions).sum(-1) | |
o = torch.stack( | |
( | |
1 - two_s * (j * j + k * k), | |
two_s * (i * j - k * r), | |
two_s * (i * k + j * r), | |
two_s * (i * j + k * r), | |
1 - two_s * (i * i + k * k), | |
two_s * (j * k - i * r), | |
two_s * (i * k - j * r), | |
two_s * (j * k + i * r), | |
1 - two_s * (i * i + j * j), | |
), | |
-1, | |
) | |
return o.reshape(quaternions.shape[:-1] + (3, 3)) | |
def quaternion_to_cont6d(quaternions): | |
rotation_mat = quaternion_to_matrix(quaternions) | |
cont_6d = torch.cat([rotation_mat[..., 0], rotation_mat[..., 1]], dim=-1) | |
return cont_6d | |
def recover_from_rot(data, joints_num, skeleton): | |
r_rot_quat, r_pos = recover_root_rot_pos(data) | |
r_rot_cont6d = quaternion_to_cont6d(r_rot_quat) | |
start_indx = 1 + 2 + 1 + (joints_num - 1) * 3 | |
end_indx = start_indx + (joints_num - 1) * 6 | |
cont6d_params = data[..., start_indx:end_indx] | |
# print(r_rot_cont6d.shape, cont6d_params.shape, r_pos.shape) | |
cont6d_params = torch.cat([r_rot_cont6d, cont6d_params], dim=-1) | |
cont6d_params = cont6d_params.view(-1, joints_num, 6) | |
positions = skeleton.forward_kinematics_cont6d(cont6d_params, r_pos) | |
return positions | |
def recover_from_ric(data, joints_num): | |
if isinstance(data, np.ndarray): | |
data = torch.from_numpy(data).float() | |
dtype = "numpy" | |
else: | |
data = data.float() | |
dtype = "tensor" | |
r_rot_quat, r_pos = recover_root_rot_pos(data) | |
positions = data[..., 4:(joints_num - 1) * 3 + 4] | |
positions = positions.view(positions.shape[:-1] + (-1, 3)) | |
'''Add Y-axis rotation to local joints''' | |
positions = qrot(qinv(r_rot_quat[..., None, :]).expand(positions.shape[:-1] + (4,)), positions) | |
'''Add root XZ to joints''' | |
positions[..., 0] += r_pos[..., 0:1] | |
positions[..., 2] += r_pos[..., 2:3] | |
'''Concate root and joints''' | |
positions = torch.cat([r_pos.unsqueeze(-2), positions], dim=-2) | |
if dtype == "numpy": | |
positions = positions.numpy() | |
return positions | |
def t2m_to_eval_rep(data, joint_num=22): | |
bs, nframes, length = data.shape | |
if isinstance(data, np.ndarray): | |
data = torch.from_numpy(data).float() | |
elif isinstance(data, torch.Tensor): | |
data = data.float() | |
joints = recover_from_ric(data, joint_num) | |
translation = joints[:, :, 0, :] - joints[:, 0:1, 0, :] ### [bs, nframes, 3] | |
joints -= translation.unsqueeze(2) | |
joints = torch.cat([translation.unsqueeze(2), joints], dim=2) #### [bs, nframes, 23, 3] | |
data = joints.reshape(bs, nframes, -1).cpu().numpy() | |
return data | |
def recover_pose_from_t2m(data, njoints=22): | |
joints = recover_from_ric(data, njoints) | |
trans = joints[:, 0, :] - joints[0:1, 0, :] | |
pose = data[:, 4 + (njoints - 1) * 3:4 + (njoints - 1) * 9] | |
pose = pose.reshape(pose.shape[0], njoints-1, 6) | |
ptype = type(pose) | |
if ptype == np.ndarray: | |
pose = torch.from_numpy(pose).float() | |
pose = rotation_6d_to_matrix(pose) | |
pose = matrix_to_axis_angle(pose) | |
pose = pose.numpy() | |
root_vel = np.zeros([pose.shape[0], 1, 3]) | |
pose = np.concatenate([root_vel, pose], axis=1) | |
elif ptype == torch.Tensor: | |
pose = rotation_6d_to_matrix(pose) | |
pose = matrix_to_axis_angle(pose) | |
root_vel = torch.zeros([pose.shape[0], 1, 3]) | |
pose = torch.cat([root_vel, pose], dim=1) | |
pose = pose.reshape(pose.shape[0], -1) | |
if njoints < 24: | |
if ptype == np.ndarray: | |
addition = np.zeros([pose.shape[0], 72-njoints*3]) | |
pose = np.concatenate([pose, addition], axis=1) | |
elif ptype == torch.Tensor: | |
addition = torch.zeros([pose.shape[0], 72-njoints*3], dtype=pose.dtype, device=pose.device) | |
pose = torch.cat([pose, addition], dim=1) | |
if ptype == np.ndarray: | |
pose = np.concatenate([pose, trans], axis=1) | |
elif ptype == torch.Tensor: | |
pose = torch.cat([pose, trans], dim=1) | |
return pose | |