Spaces:
Runtime error
Runtime error
import torch | |
from motion.visual_api import Visualize | |
import moviepy.editor as mpy | |
import os, sys | |
import time | |
import json | |
import imageio | |
import argparse | |
def interface(prompt, mode="cadm", render_mode="pyrender", out_size=1024, tada_role=None): | |
os.makedirs("results/motion", exist_ok=True) | |
os.makedirs("results/joints", exist_ok=True) | |
os.makedirs("results/smpls", exist_ok=True) | |
name = prompt.replace("/", "_").replace(" ", "_").replace(",", "_").replace("#", "_").replace("|", "_").replace(".npy", "").replace(".txt", "").replace(".csv", "").replace(".", "").replace("'", "_") | |
name = "_".join(name.split("_")[:25]) | |
out_path = os.path.join("results/motion", name + ".mp4") | |
gif_path = os.path.join("results/motion", name + ".gif") | |
joint_path = os.path.join("results/joints", name + ".npy") | |
smpl_path = os.path.join("results/smpls", name + ".npy") | |
''' | |
prompt 输入为 length, prompt, 如果只输入 prompt, length 默认为 196 | |
mode 指不同的模型 | |
''' | |
assert mode in ["cadm", "cadm-augment", "mdm"] | |
assert render_mode in ["joints", "pyrender_fast", "pyrender_slow"] | |
path = None | |
with open("motion/path.json", "r") as f: | |
json_dict = json.load(f) | |
t1 = time.time() | |
kargs = { | |
"mode":mode, | |
"device":"cuda" if torch.cuda.is_available() else "cpu", | |
"rotate":0, | |
"condition":"text", | |
"smpl_path":json_dict["smpl_path"], | |
"skip_steps":0, | |
"path":json_dict, | |
"tada_base":json_dict["tada_base"], | |
"tada_role":tada_role | |
} | |
visual = Visualize(**kargs) | |
t2 = time.time() | |
output = visual.predict(prompt, path, render_mode, joint_path, smpl_path) | |
t3 = time.time() | |
if render_mode == "joints": | |
pics = visual.joints_process(output, prompt, out_size, out_size) | |
elif render_mode.startswith("pyrender"): | |
meshes, _ = visual.get_mesh(output) | |
pics = visual.pyrender_process(meshes, out_size, out_size) | |
vid = mpy.ImageSequenceClip([x[:, :, :] for x in pics], fps=20) | |
vid.write_videofile(out_path, remove_temp=True) | |
imageio.mimsave(gif_path, pics, duration= 1000 / 20, loop=0) | |
t4 = time.time() | |
cost_init = t2 - t1 | |
cost_infer = t3 - t2 | |
cost_render = t4 - t3 | |
print("initial model cost time: %.4f, infer and fit cost time: %.4f, render cost time: %.4f, total cost time: %.4f"%(cost_init, cost_infer, cost_render, t4 - t1)) | |
return out_path | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description='visualize demo') | |
############################ basic_setings ######################## | |
parser.add_argument('--prompt', type=str, default="120, A person walks forward and does a handstand.") | |
parser.add_argument('--mode', type=str, default="cadm", choices=['cadm', 'cadm-augment', "mdm"], help="choose model") | |
parser.add_argument("--render_mode", default="pyrender_slow", type=str, choices=["pyrender_slow", "pyrender_fast", "joints"]) | |
parser.add_argument("--size", default=1024, type=int) | |
parser.add_argument("--tada_role", default=None, type=str) | |
opt = parser.parse_args() | |
out_path = interface(opt.prompt, mode=opt.mode, render_mode=opt.render_mode, out_size=opt.size, tada_role=opt.tada_role) |