kleinhe
init
c3d0293
raw
history blame
4.95 kB
from __future__ import print_function, division
import argparse
import torch
import os,sys
from os import walk, listdir
from os.path import isfile, join
import numpy as np
import joblib
import smplx
import trimesh
import h5py
from tqdm import tqdm
sys.path.append(os.path.join(os.path.dirname(__file__), "src"))
from smplify import SMPLify3D
import config
# parsing argmument
parser = argparse.ArgumentParser()
parser.add_argument('--batchSize', type=int, default=1,
help='input batch size')
parser.add_argument('--num_smplify_iters', type=int, default=100,
help='num of smplify iters')
parser.add_argument('--cuda', type=bool, default=False,
help='enables cuda')
parser.add_argument('--gpu_ids', type=int, default=0,
help='choose gpu ids')
parser.add_argument('--num_joints', type=int, default=22,
help='joint number')
parser.add_argument('--joint_category', type=str, default="AMASS",
help='use correspondence')
parser.add_argument('--fix_foot', type=str, default="False",
help='fix foot or not')
parser.add_argument('--data_folder', type=str, default="./demo/demo_data/",
help='data in the folder')
parser.add_argument('--save_folder', type=str, default="./demo/demo_results/",
help='results save folder')
parser.add_argument('--files', type=str, default="test_motion.npy",
help='files use')
opt = parser.parse_args()
print(opt)
# ---load predefined something
device = torch.device("cuda:" + str(opt.gpu_ids) if opt.cuda else "cpu")
print(config.SMPL_MODEL_DIR)
smplmodel = smplx.create(config.SMPL_MODEL_DIR,
model_type="smpl", gender="neutral", ext="pkl",
batch_size=opt.batchSize).to(device)
# ## --- load the mean pose as original ----
smpl_mean_file = config.SMPL_MEAN_FILE
file = h5py.File(smpl_mean_file, 'r')
init_mean_pose = torch.from_numpy(file['pose'][:]).unsqueeze(0).float()
init_mean_shape = torch.from_numpy(file['shape'][:]).unsqueeze(0).float()
cam_trans_zero = torch.Tensor([0.0, 0.0, 0.0]).to(device)
#
pred_pose = torch.zeros(opt.batchSize, 72).to(device)
pred_betas = torch.zeros(opt.batchSize, 10).to(device)
pred_cam_t = torch.zeros(opt.batchSize, 3).to(device)
keypoints_3d = torch.zeros(opt.batchSize, opt.num_joints, 3).to(device)
# # #-------------initialize SMPLify
smplify = SMPLify3D(smplxmodel=smplmodel,
batch_size=opt.batchSize,
joints_category=opt.joint_category,
num_iters=opt.num_smplify_iters,
device=device)
#print("initialize SMPLify3D done!")
purename = os.path.splitext(opt.files)[0]
# --- load data ---
data = np.load(opt.data_folder + "/" + purename + ".npy") # [nframes, njoints, 3]
dir_save = os.path.join(opt.save_folder, purename)
if not os.path.isdir(dir_save):
os.makedirs(dir_save, exist_ok=True)
# run the whole seqs
num_seqs = data.shape[0]
for idx in tqdm(range(num_seqs)):
#print(idx)
joints3d = data[idx] #*1.2 #scale problem [check first]
keypoints_3d[0, :, :] = torch.Tensor(joints3d).to(device).float()
if idx == 0:
pred_betas[0, :] = init_mean_shape
pred_pose[0, :] = init_mean_pose
pred_cam_t[0, :] = cam_trans_zero
else:
data_param = joblib.load(dir_save + "/" + "%04d"%(idx-1) + ".pkl")
pred_betas[0, :] = torch.from_numpy(data_param['beta']).unsqueeze(0).float()
pred_pose[0, :] = torch.from_numpy(data_param['pose']).unsqueeze(0).float()
pred_cam_t[0, :] = torch.from_numpy(data_param['cam']).unsqueeze(0).float()
if opt.joint_category =="AMASS":
confidence_input = torch.ones(opt.num_joints)
# make sure the foot and ankle
if opt.fix_foot == True:
confidence_input[7] = 1.5
confidence_input[8] = 1.5
confidence_input[10] = 1.5
confidence_input[11] = 1.5
else:
print("Such category not settle down!")
# ----- from initial to fitting -------
new_opt_vertices, new_opt_joints, new_opt_pose, new_opt_betas, \
new_opt_cam_t, new_opt_joint_loss = smplify(
pred_pose.detach(),
pred_betas.detach(),
pred_cam_t.detach(),
keypoints_3d,
conf_3d=confidence_input.to(device),
seq_ind=idx
)
# # -- save the results to ply---
outputp = smplmodel(betas=new_opt_betas, global_orient=new_opt_pose[:, :3], body_pose=new_opt_pose[:, 3:],
transl=new_opt_cam_t, return_verts=True)
mesh_p = trimesh.Trimesh(vertices=outputp.vertices.detach().cpu().numpy().squeeze(), faces=smplmodel.faces, process=False)
mesh_p.export(dir_save + "/" + "%04d"%idx + ".ply")
# save the pkl
param = {}
param['beta'] = new_opt_betas.detach().cpu().numpy()
param['pose'] = new_opt_pose.detach().cpu().numpy()
param['cam'] = new_opt_cam_t.detach().cpu().numpy()
joblib.dump(param, dir_save + "/" + "%04d"%idx + ".pkl", compress=3)