File size: 11,511 Bytes
c3d0293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from torch import nn
import torch
import numpy as np
from SMPLX.visualize_joint2smpl.simplify_loc2rot import joints2smpl
from motion.hybrik_loc2rot import HybrIKJointsToRotmat
from SMPLX import smplx
from SMPLX.read_from_npy import npy2info, info2dict
from SMPLX.rotation_conversions import *
from motion.dataset.recover_smr import *
from motion.dataset.recover_joints import recover_from_ric as recover_joints
from motion.dataset.paramUtil import t2m_kinematic_chain
from motion.plot3d import plot_3d_motion
import os
import subprocess
import platform
from PIL import Image
from motion.sample import Predictor as mdm_predictor
from TADA.anime import Animation

class Visualize(nn.Module):
    def __init__(self, **kargs):
        super(Visualize, self).__init__()
        self.mode = kargs.get("mode", "cadm")
        if self.mode in ["mdm", "cadm", "cadm-augment"]:
            self.predictor = mdm_predictor(**kargs)
            self.rep = self.predictor.rep
        self.smpl_path = kargs.get("smpl_path")
        self.device = kargs.get("device", "cpu")
        self.rotate = kargs.get("rotate", 0)
        self.pose_generator = HybrIKJointsToRotmat()
        self.path = kargs["path"]

        self.tada_base = kargs.get("tada_base", None)
        self.tada_role = kargs.get("tada_role", None)

        if self.tada_base is not None and self.tada_role is not None:
            self.anime = Animation(self.tada_role, self.tada_base, self.device)
            self.face = None
        else:
            self.face = np.load(os.path.join(self.path["dataset_dir"], "smplh.faces"))
            self.anime = None

    def fit2smpl(self, motion, mode="fast"):
        print(">>>>>>>>>>>>>>> fit joints to smpl >>>>>>>>>>>>>>>>>>>>")
        if mode == "slow":
            frames = motion.shape[0]
            j2s = joints2smpl(num_frames=frames, device=self.device, model_path=self.smpl_path, json_dict=self.path)
            motion_tensor, translation = j2s.joint2smpl(motion)
        else:
            translation = motion[:, 0:1, :] - motion[0, 0:1, :]
            motion = self.pose_generator(motion)
            motion = torch.from_numpy(motion)
            hand = torch.eye(3).unsqueeze(0).unsqueeze(0).repeat(motion.shape[0], 2, 1, 1)
            motion = torch.cat([motion, hand], dim=1)
            motion_tensor = matrix_to_axis_angle(motion)
            motion_tensor = motion_tensor.numpy()

        return motion_tensor, translation

    def predict(self, sentence, path, render_mode="pyrender", joint_path=None, smpl_path=None):
        if self.mode == "pose":
            motion_tensor = np.load(path)
            if render_mode == "joints":
                _, joints = self.get_mesh(motion_tensor)
                motion_tensor = joints
                
        elif self.mode == "joints":
            joints = np.load(path)
            if render_mode == "joints":
                motion_tensor = joints
            else:
                motion_tensor, translation = self.fit2smpl(joints, render_mode.split("_")[-1])
                motion_tensor = np.concatenate([motion_tensor, translation], axis=1)
                motion_tensor = motion_tensor.reshape(motion_tensor.shape[0], -1)   
        elif self.mode in ["mdm", "cadm", "cadm-augment"]:
            motion_tensor = self.predictor.predict(sentence, 1, path)
            if self.rep == "t2m":
                motion_tensor = motion_tensor[0].detach().cpu().numpy()         #### [nframes, 263]

                if joint_path is not None:
                    np.save(joint_path, motion_tensor)

                if render_mode == "joints":
                    motion_tensor = motion_tensor
                else:
                    motion_tensor, translation = self.fit2smpl(motion_tensor, render_mode.split("_")[-1])
                    motion_tensor = np.concatenate([motion_tensor, translation], axis=1)    
                    motion_tensor = motion_tensor.reshape(motion_tensor.shape[0], -1)

                if smpl_path is not None:
                    np.save(smpl_path, motion_tensor)

            elif self.rep == "smr":
                motion_tensor = motion_tensor[0][0].detach().cpu().numpy()
                joints = recover_from_ric(motion_tensor, 22)

                if joint_path is not None:
                    np.save(joint_path, joints)

                if render_mode == "joints":
                    motion_tensor = joints
                else:
                    pose = recover_pose_from_smr(motion_tensor, 22)
                    pose = pose.reshape(pose.shape[0], -1, 3)
                    motion_tensor, translation = self.fit2smpl(joints, render_mode.split("_")[-1])
                    motion_tensor = np.concatenate([motion_tensor, translation], axis=1)
                    motion_tensor = motion_tensor.reshape(motion_tensor.shape[0], -1, 3)
                    replace = [12, 15, 20, 21]
                    motion_tensor[:, replace, :] = pose[:, replace, :]
                    motion_tensor = motion_tensor.reshape(motion_tensor.shape[0], -1)
            
                if smpl_path is not None:
                    np.save(smpl_path, motion_tensor)

        return motion_tensor.astype(np.float32)

    def joints_process(self, joints, text, width=1024, height=1024):
        os.makedirs("temp", exist_ok=True)
        plot_3d_motion(t2m_kinematic_chain, joints, text, figsize=(width/100, height/100))
        files = os.listdir("temp")
        files = sorted(files)
        pics = []
        for i in range(len(files)):
            pic = Image.open(os.path.join("temp", files[i]))
            pic = np.asarray(pic)
            pics.append(pic.copy())
        
        cmd = "rm -r temp"
        subprocess.call(cmd, shell=platform.system() != 'Windows')
        pics = np.stack(pics, axis=0)
        return pics

    def pyrender_process(self, vertices, height=1024, weight=1024):
        import trimesh
        from trimesh import Trimesh
        import pyrender
        from pyrender.constants import RenderFlags
        import os
        os.environ['PYOPENGL_PLATFORM'] = "egl"
        from shapely import geometry
        from tqdm import tqdm
    
        faces = self.face

        vertices = vertices.astype(np.float32)
        MINS = np.min(np.min(vertices, axis=0), axis=0)
        MAXS = np.max(np.max(vertices, axis=0), axis=0)

        #################### position initial at zero point
        vertices[:, :, 0] -= (MAXS + MINS)[0] / 2
        vertices[:, :, 2] -= (MAXS + MINS)[2] / 2

        MINS = np.min(np.min(vertices, axis=0), axis=0)
        MAXS = np.max(np.max(vertices, axis=0), axis=0)

        pics = []

        ############### ground initial ###########
        minx = MINS[0] - 0.5
        maxx = MAXS[0] + 0.5
        minz = MINS[2] - 0.5 
        maxz = MAXS[2] + 0.5
        polygon = geometry.Polygon([[minx, minz], [minx, maxz], [maxx, maxz], [maxx, minz]])
        polygon_mesh = trimesh.creation.extrude_polygon(polygon, 1e-5)
        polygon_mesh.visual.face_colors = [0, 0, 0, 0.21]
        polygon_render = pyrender.Mesh.from_trimesh(polygon_mesh, smooth=False)

        r = pyrender.OffscreenRenderer(weight, height)

        for i in tqdm(range(vertices.shape[0])):
            end_color = np.array([30, 128, 255]) / 255.0

            bg_color = [1, 1, 1, 0.8]
            scene = pyrender.Scene(bg_color=bg_color, ambient_light=(0.4, 0.4, 0.4))

            if self.anime is None:
                mesh = Trimesh(vertices=vertices[i, :, :].tolist(), faces=faces) 
                base_color = end_color.tolist()
                material = pyrender.MetallicRoughnessMaterial(
                    metallicFactor=0.7, roughnessFactor=0.7,
                    alphaMode='OPAQUE',
                    baseColorFactor=base_color
                )
                mesh = pyrender.Mesh.from_trimesh(mesh, material=material)
            else:
                mesh = Trimesh(vertices=vertices[i, :, :].tolist(), faces=faces, visual=self.anime.trimesh_visual, process=False)
                mesh = pyrender.Mesh.from_trimesh(mesh, smooth=True, material=None)   

            scene.add(mesh)

            ########################### ground ##################
            c = np.pi / 2
            scene.add(polygon_render, pose=np.array([[ 1, 0, 0, 0],
            [ 0, np.cos(c), -np.sin(c), MINS[1]],
            [ 0, np.sin(c), np.cos(c), 0],
            [ 0, 0, 0, 1]]))

            ################ light ############
            light = pyrender.DirectionalLight(color=[1,1,1], intensity=300)
            light_pose = np.eye(4)
            light_pose[:3, 3] = [0, -1, 1]
            scene.add(light, pose=light_pose.copy())
            light_pose[:3, 3] = [0, 1, 1]
            scene.add(light, pose=light_pose.copy())
            light_pose[:3, 3] = [1, 1, 2]
            scene.add(light, pose=light_pose.copy())

            ################ camera ##############
            camera = pyrender.PerspectiveCamera(yfov=(np.pi / 3.0))
            c = -np.pi / 6
            scene.add(camera, pose=[[ 1, 0, 0, (minx+maxx)],
                                    [ 0, np.cos(c), -np.sin(c), 2.5],
                                    [ 0, np.sin(c), np.cos(c), max(4, minz+(1.5-MINS[1])*2, (maxx-minx))],
                                    [ 0, 0, 0, 1]
                                    ])

            pic, _ = r.render(scene, flags=RenderFlags.RGBA)
            pics.append(pic)

        pics = np.stack(pics, axis=0)
        return pics

    @torch.no_grad()
    def get_mesh(self, motions):
        if self.anime is not None:
            vertices, faces = self.anime.forward_mdm(motions)
            joints = vertices
            self.face = faces
        else:
            motions, trans, gender, betas = npy2info(motions, 10)

            betas = None
            gender = "neutral"

            if motions.shape[1] == 72:
                mode = "smpl"
            elif motions.shape[1] == 156:
                mode = "smplh"
            elif motions.shape[1] == 165:
                motions = np.concatenate([motions[:, :66], motions[:, 75::]], axis=1)
                mode = "smplh"

            if self.rotate != 0:
                motions = motions.reshape(motions.shape[0], -1, 3)
                motions = torch.from_numpy(motions).float()
                first_frame_root_pose_matrix = axis_angle_to_matrix(motions[0][0])
                all_root_poses_matrix = axis_angle_to_matrix(motions[:, 0, :])
                aligned_root_poses_matrix = torch.matmul(torch.transpose(first_frame_root_pose_matrix, 0, 1),
                                                            all_root_poses_matrix)
                motions[:, 0, :] = matrix_to_axis_angle(aligned_root_poses_matrix)
                motions = motions.reshape(motions.shape[0], -1)
                motions = motions.numpy()

            print("Visualize Mode -> ", mode)
            model = smplx.create(self.smpl_path, model_type=mode,
                                gender=gender, use_face_contour=True,
                                num_betas=10,
                                num_expression_coeffs=10,
                                ext="npz", use_pca=False, batch_size=motions.shape[0])
            model = model.eval().to(self.device)

            inputs = info2dict(motions, trans, betas, mode, self.device)

            output = model(**inputs)

            vertices = output.vertices.cpu().numpy()
            joints = output.joints.cpu().numpy()

        return vertices, joints