File size: 7,806 Bytes
c3d0293
 
 
 
 
 
 
 
 
 
 
 
 
50a02f4
479b355
c3d0293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a52ce8
c3d0293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50a02f4
6e1c987
c3d0293
 
 
 
 
a995483
c3d0293
 
 
7bdbc03
 
 
a32da5d
c3d0293
 
50a02f4
c3d0293
 
 
50a02f4
c3d0293
 
 
50a02f4
c3d0293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a305470
479b355
 
c3d0293
 
 
 
 
 
 
 
 
 
 
 
73ba0a5
c3d0293
 
a995483
c3d0293
 
 
 
 
 
 
 
 
 
 
 
479b355
c3d0293
 
 
 
 
 
479b355
c3d0293
 
 
 
 
 
479b355
c3d0293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os, sys
import gradio as gr
from huggingface_hub import snapshot_download
css = """
.dfile {height: 85px}
.ov {height: 185px}
"""


from huggingface_hub import snapshot_download
from motion.visual_api import Visualize  
import torch
import json
from tqdm import tqdm
import imageio

with open("motion/path.json", "r") as f:
    json_dict = json.load(f)

def ref_video_fn(path_of_ref_video):
    if path_of_ref_video is not None:
        return gr.update(value=True)
    else:
        return gr.update(value=False)

def prepare():
    if not os.path.exists("body_models") or not os.path.exists("weights"):
        REPO_ID = 'Kleinhe/CAMD'
        snapshot_download(repo_id=REPO_ID, local_dir='./', local_dir_use_symlinks=False)

    if not os.path.exists("tada-extend"):
        import subprocess
        import platform
        command = "bash scripts/tada_goole.sh"
        subprocess.call(command, shell=platform.system() != 'Windows')

def demo(prompt, mode, condition, render_mode="joints", skip_steps=0, out_size=1024, tada_role=None):
    prompt = prompt
    if prompt is None:
        prompt = ""
    
    path = None
    out_paths = [None, None, None]
    joints_paths = [None, None, None]
    smpl_paths = [None, None, None]

    if tada_role == "None":
        tada_role = None

    for i in range(len(mode)):
        kargs = {
            "mode":mode[i],
            "device":"cuda" if torch.cuda.is_available() else "cpu",
            "condition":condition,
            "smpl_path":json_dict["smpl_path"],
            "skip_steps":skip_steps,
            "path":json_dict,
            "tada_base":json_dict["tada_base"],
            "tada_role":tada_role
        }
        visual = Visualize(**kargs)
        render_mode = render_mode

        joint_path = "results/joints/{}_joint.npy".format(mode[i])
        smpl_path = "results/smpls/{}_smpl.npy".format(mode[i])
        video_path = "results/motion/{}_video.gif".format(mode[i])

        output = visual.predict(prompt, path, render_mode, joint_path, smpl_path)

        if render_mode == "joints":
            pics = visual.joints_process(output, prompt)
        elif render_mode.startswith("pyrender"):
            meshes, _ = visual.get_mesh(output)
            pics = visual.pyrender_process(meshes, out_size, out_size)
        
        try:
            imageio.mimsave(video_path, pics, duration= 1000 / 20, loop=0)
        except:
            imageio.mimsave(video_path, pics, fps=20)

        if mode[i] == "cadm":
            out_paths[0] = video_path
            joints_paths[0] = joint_path
            smpl_paths[0] = smpl_path
        elif mode[i] == "cadm-augment":
            out_paths[1] = video_path
            joints_paths[1] = joint_path
            smpl_paths[1] = smpl_path
        elif mode[i] == "mdm":
            out_paths[2] = video_path
            joints_paths[2] = joint_path
            smpl_paths[2] = smpl_path
    
    return out_paths + joints_paths + smpl_paths
    

def t2m_demo():
    prepare()
    os.makedirs("results/motion", exist_ok=True)
    os.makedirs("results/joints", exist_ok=True)
    os.makedirs("results/smpls", exist_ok=True)

    tada_base = json_dict["tada_base"]
    files = os.listdir(os.path.join(tada_base, "MESH"))
    files = sorted(files)
    if files[0].startswith("."):
        files.pop(0)
    files = ["None"] +  files

    with gr.Blocks(analytics_enabled=False, css=css) as t2m_interface:
        gr.Markdown("<div align='center'> <h2> 🤷‍♂️ SemanticBoost: Elevating Motion Generation with Augmented Textual Cues </span> </h2> \
                    <a style='font-size:18px;' href='https://arxiv.org/abs/2310.20323'>Arxiv</a> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; \
                    <a style='font-size:18px;' href='https://blackgold3.github.io/SemanticBoost/'>Homepage</a>  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; \
                    <a style='font-size:18px;' href='https://github.com/blackgold3/SemanticBoost'> Github </div>")
        
        with gr.Row().style(equal_height=True):
            with gr.Column(variant='panel'): 
                with gr.Tabs():
                    with gr.TabItem('Settings'):
                        with gr.Column(variant='panel'):
                            with gr.Row():
                                demo_mode = gr.CheckboxGroup(choices=['cadm', 'cadm-augment','mdm'], default=["cadm"], label='Mode', info="Choose models to run demos, more models cost more time.")
                                skip_steps = gr.Number(value=0, label="Skip-Steps", info="The number of skip-steps during diffusion process (0 -> 999)", minimum=0, maximum=999, precision=0)

                            with gr.Row():
                                condition = gr.Radio(['text', 'uncond'], value='text', label='Condition', info="If sythesize motion with prompt?")
                                out_size = gr.Number(value=256, label="Resolution", info="The resolution of output videos", minimum=128, maximum=2048, precision=0)

                            with gr.Row():
                                render_mode = gr.Radio(['joints','pyrender_fast', 'pyrender_slow'], value='joints', label='Render', info="If render results to 3D meshes? Pyrender need more time.")
                                tada_role = gr.Dropdown(files, value="None", multiselect=False, label="TADA Role", info="Choose 3D role to render")

                            with gr.Row():
                                prompt = gr.Textbox(value=None, placeholder="120,A person walks forward and does a handstand.", label="Prompt for Model -> (Length,Text)")

                submit = gr.Button('Visualize', variant='primary')

            with gr.Column(variant='panel'):      
                with gr.Tabs():
                    with gr.TabItem('Results'):
                        with gr.Row():
                            with gr.Column():
                                gen_video = gr.Image(label="CADM", elem_classes="ov")
                            with gr.Column():
                                joint_file = gr.File(label="CADM-Joints", value=None, elem_classes="dfile")
                                smpl_file = gr.File(label="CADM-SMPL", value=None, elem_classes="dfile")

                        with gr.Row():
                            with gr.Column():
                                gen_video1 = gr.Image(label="CADM-Augment", elem_classes="ov")
                            with gr.Column():
                                joint_file1 = gr.File(label="CADM-Augment-Joints", value=None, elem_classes="dfile")
                                smpl_file1 = gr.File(label="CADM-Augment-SMPL", value=None, elem_classes="dfile")
                                
                        with gr.Row():
                            with gr.Column():
                                gen_video2 = gr.Image(label="MDM", elem_classes="ov")
                            with gr.Column():
                                joint_file2 = gr.File(label="MDM-Joints", value=None, elem_classes="dfile")
                                smpl_file2 = gr.File(label="MDM-SMPL", value=None, elem_classes="dfile")

                        
        submit.click(
                fn=demo,
                inputs=[prompt,
                        demo_mode,
                        condition,
                        render_mode,    
                        skip_steps,    
                        out_size,
                        tada_role               
                        ], 
                outputs=[gen_video, gen_video1, gen_video2, joint_file, joint_file1, joint_file2, smpl_file, smpl_file1, smpl_file2]
                )

    return t2m_interface
 

if __name__ == "__main__":
    demo = t2m_demo()
    demo.queue(max_size=10)
    demo.launch(debug=True)