Spaces:
Runtime error
Runtime error
File size: 7,806 Bytes
c3d0293 50a02f4 479b355 c3d0293 2a52ce8 c3d0293 50a02f4 6e1c987 c3d0293 a995483 c3d0293 7bdbc03 a32da5d c3d0293 50a02f4 c3d0293 50a02f4 c3d0293 50a02f4 c3d0293 a305470 479b355 c3d0293 73ba0a5 c3d0293 a995483 c3d0293 479b355 c3d0293 479b355 c3d0293 479b355 c3d0293 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import os, sys
import gradio as gr
from huggingface_hub import snapshot_download
css = """
.dfile {height: 85px}
.ov {height: 185px}
"""
from huggingface_hub import snapshot_download
from motion.visual_api import Visualize
import torch
import json
from tqdm import tqdm
import imageio
with open("motion/path.json", "r") as f:
json_dict = json.load(f)
def ref_video_fn(path_of_ref_video):
if path_of_ref_video is not None:
return gr.update(value=True)
else:
return gr.update(value=False)
def prepare():
if not os.path.exists("body_models") or not os.path.exists("weights"):
REPO_ID = 'Kleinhe/CAMD'
snapshot_download(repo_id=REPO_ID, local_dir='./', local_dir_use_symlinks=False)
if not os.path.exists("tada-extend"):
import subprocess
import platform
command = "bash scripts/tada_goole.sh"
subprocess.call(command, shell=platform.system() != 'Windows')
def demo(prompt, mode, condition, render_mode="joints", skip_steps=0, out_size=1024, tada_role=None):
prompt = prompt
if prompt is None:
prompt = ""
path = None
out_paths = [None, None, None]
joints_paths = [None, None, None]
smpl_paths = [None, None, None]
if tada_role == "None":
tada_role = None
for i in range(len(mode)):
kargs = {
"mode":mode[i],
"device":"cuda" if torch.cuda.is_available() else "cpu",
"condition":condition,
"smpl_path":json_dict["smpl_path"],
"skip_steps":skip_steps,
"path":json_dict,
"tada_base":json_dict["tada_base"],
"tada_role":tada_role
}
visual = Visualize(**kargs)
render_mode = render_mode
joint_path = "results/joints/{}_joint.npy".format(mode[i])
smpl_path = "results/smpls/{}_smpl.npy".format(mode[i])
video_path = "results/motion/{}_video.gif".format(mode[i])
output = visual.predict(prompt, path, render_mode, joint_path, smpl_path)
if render_mode == "joints":
pics = visual.joints_process(output, prompt)
elif render_mode.startswith("pyrender"):
meshes, _ = visual.get_mesh(output)
pics = visual.pyrender_process(meshes, out_size, out_size)
try:
imageio.mimsave(video_path, pics, duration= 1000 / 20, loop=0)
except:
imageio.mimsave(video_path, pics, fps=20)
if mode[i] == "cadm":
out_paths[0] = video_path
joints_paths[0] = joint_path
smpl_paths[0] = smpl_path
elif mode[i] == "cadm-augment":
out_paths[1] = video_path
joints_paths[1] = joint_path
smpl_paths[1] = smpl_path
elif mode[i] == "mdm":
out_paths[2] = video_path
joints_paths[2] = joint_path
smpl_paths[2] = smpl_path
return out_paths + joints_paths + smpl_paths
def t2m_demo():
prepare()
os.makedirs("results/motion", exist_ok=True)
os.makedirs("results/joints", exist_ok=True)
os.makedirs("results/smpls", exist_ok=True)
tada_base = json_dict["tada_base"]
files = os.listdir(os.path.join(tada_base, "MESH"))
files = sorted(files)
if files[0].startswith("."):
files.pop(0)
files = ["None"] + files
with gr.Blocks(analytics_enabled=False, css=css) as t2m_interface:
gr.Markdown("<div align='center'> <h2> 🤷♂️ SemanticBoost: Elevating Motion Generation with Augmented Textual Cues </span> </h2> \
<a style='font-size:18px;' href='https://arxiv.org/abs/2310.20323'>Arxiv</a> \
<a style='font-size:18px;' href='https://blackgold3.github.io/SemanticBoost/'>Homepage</a> \
<a style='font-size:18px;' href='https://github.com/blackgold3/SemanticBoost'> Github </div>")
with gr.Row().style(equal_height=True):
with gr.Column(variant='panel'):
with gr.Tabs():
with gr.TabItem('Settings'):
with gr.Column(variant='panel'):
with gr.Row():
demo_mode = gr.CheckboxGroup(choices=['cadm', 'cadm-augment','mdm'], default=["cadm"], label='Mode', info="Choose models to run demos, more models cost more time.")
skip_steps = gr.Number(value=0, label="Skip-Steps", info="The number of skip-steps during diffusion process (0 -> 999)", minimum=0, maximum=999, precision=0)
with gr.Row():
condition = gr.Radio(['text', 'uncond'], value='text', label='Condition', info="If sythesize motion with prompt?")
out_size = gr.Number(value=256, label="Resolution", info="The resolution of output videos", minimum=128, maximum=2048, precision=0)
with gr.Row():
render_mode = gr.Radio(['joints','pyrender_fast', 'pyrender_slow'], value='joints', label='Render', info="If render results to 3D meshes? Pyrender need more time.")
tada_role = gr.Dropdown(files, value="None", multiselect=False, label="TADA Role", info="Choose 3D role to render")
with gr.Row():
prompt = gr.Textbox(value=None, placeholder="120,A person walks forward and does a handstand.", label="Prompt for Model -> (Length,Text)")
submit = gr.Button('Visualize', variant='primary')
with gr.Column(variant='panel'):
with gr.Tabs():
with gr.TabItem('Results'):
with gr.Row():
with gr.Column():
gen_video = gr.Image(label="CADM", elem_classes="ov")
with gr.Column():
joint_file = gr.File(label="CADM-Joints", value=None, elem_classes="dfile")
smpl_file = gr.File(label="CADM-SMPL", value=None, elem_classes="dfile")
with gr.Row():
with gr.Column():
gen_video1 = gr.Image(label="CADM-Augment", elem_classes="ov")
with gr.Column():
joint_file1 = gr.File(label="CADM-Augment-Joints", value=None, elem_classes="dfile")
smpl_file1 = gr.File(label="CADM-Augment-SMPL", value=None, elem_classes="dfile")
with gr.Row():
with gr.Column():
gen_video2 = gr.Image(label="MDM", elem_classes="ov")
with gr.Column():
joint_file2 = gr.File(label="MDM-Joints", value=None, elem_classes="dfile")
smpl_file2 = gr.File(label="MDM-SMPL", value=None, elem_classes="dfile")
submit.click(
fn=demo,
inputs=[prompt,
demo_mode,
condition,
render_mode,
skip_steps,
out_size,
tada_role
],
outputs=[gen_video, gen_video1, gen_video2, joint_file, joint_file1, joint_file2, smpl_file, smpl_file1, smpl_file2]
)
return t2m_interface
if __name__ == "__main__":
demo = t2m_demo()
demo.queue(max_size=10)
demo.launch(debug=True)
|