File size: 4,550 Bytes
c3d0293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os.path as osp
import argparse
import numpy as np
import torch
import trimesh
from SMPLX import smplx
from SMPLX.smplx.joint_names import Body
from SMPLX.read_from_npy import npy2info, info2dict
from tqdm.auto import tqdm, trange
from pathlib import Path
import os
os.environ['PYOPENGL_PLATFORM'] = "egl"

def write_obj(
    model_folder,
    motion_file,
    output_folder,
    model_type="smplh",
    gender="neutral",
    num_betas=10,
    num_expression_coeffs=10,
    use_face_contour=False,
    device="cpu"
):
    output_folder = Path(output_folder)
    assert output_folder.exists()

    # open motion file
    motion = np.load(motion_file, allow_pickle=True)
    try:
        poses = motion["poses"]
        gender = str(motion.get("gender", "neutral"))
        trans = motion.get("trans", None)
        betas = motion.get("betas", np.zeros([poses.shape[0], 10]))
    except:
        poses, trans, gender, betas = npy2info(motion, 10)

    # don't know where this is documented but it's from this part of amass
    # https://github.com/nghorbani/amass/blob/master/src/amass/data/prepare_data.py#L39-L40
    # gdr2num = {'male':-1, 'neutral':0, 'female':1}
    # gdr2num_rev = {v:k for k,v in gdr2num.items()}

    model = smplx.create(model_folder, model_type=model_type,
                        gender=gender, use_face_contour=use_face_contour,
                        num_betas=num_betas,
                        num_expression_coeffs=num_expression_coeffs,
                        ext="npz", use_pca=False, batch_size=poses.shape[0])

    model = model.eval().to(device)
    inputs = info2dict(poses, trans, betas, model_type, device=device)
    output = model(**inputs)
    vertices = output.vertices.detach().cpu().numpy()

    for pose_idx in range(vertices.shape[0]):
        curr_vert = vertices[pose_idx]

        vertex_colors = np.ones([curr_vert.shape[0], 4]) * [0.3, 0.3, 0.3, 0.8]
        # process=False to avoid creating a new mesh
        tri_mesh = trimesh.Trimesh(
            curr_vert, model.faces, vertex_colors=vertex_colors, process=False
        )

        '''
        humanact12 smpl 转 smplx
        仅和 amass 格式对齐时使用
        '''
        if "humanact" in motion_file:
            transf = trimesh.transformations.rotation_matrix(np.radians(90), (1, 0, 0))
            tri_mesh.apply_transform(transf)
        ###################

        output_path = output_folder / "{0:04d}.obj".format(pose_idx)
        tri_mesh.export(str(output_path))

    del model 
    del motion




if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="SMPL-X Demo")

    parser.add_argument(
        "--model-folder", required=True, type=str, help="The path to the model folder"
    )
    parser.add_argument(
        "--motion-file",
        required=True,
        type=str,
        help="The path to the motion file to process",
    )
    parser.add_argument(
        "--output-folder", required=True, type=str, help="The path to the output folder"
    )
    parser.add_argument(
        "--model-type",
        default="smplh",
        type=str,
        choices=["smpl", "smplh", "smplx", "mano", "flame"],
        help="The type of model to load",
    )
    parser.add_argument(
        "--num-expression-coeffs",
        default=10,
        type=int,
        dest="num_expression_coeffs",
        help="Number of expression coefficients.",
    )
    parser.add_argument(
        "--ext", type=str, default="npz", help="Which extension to use for loading"
    )
    parser.add_argument(
        "--sample-expression",
        default=True,
        dest="sample_expression",
        type=lambda arg: arg.lower() in ["true", "1"],
        help="Sample a random expression",
    )
    parser.add_argument(
        "--use-face-contour",
        default=False,
        type=lambda arg: arg.lower() in ["true", "1"],
        help="Compute the contour of the face",
    )

    args = parser.parse_args()

    def resolve(path):
        return osp.expanduser(osp.expandvars(path))

    model_folder = resolve(args.model_folder)
    motion_file = resolve(args.motion_file)
    output_folder = resolve(args.output_folder)
    model_type = args.model_type
    ext = args.ext
    num_expression_coeffs = args.num_expression_coeffs
    sample_expression = args.sample_expression

    write_obj(
        model_folder,
        motion_file,
        output_folder,
        model_type,
        ext=ext,
        sample_expression=sample_expression,
        use_face_contour=args.use_face_contour,
    )