File size: 5,209 Bytes
c3d0293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os.path as osp
import argparse

import numpy as np
import torch

import pyrender
import trimesh

import smplx

from tqdm.auto import tqdm, trange

from pathlib import Path

def main(model_folder,
         motion_file,
         model_type='smplx',
         ext='npz',
         gender='neutral',
         plot_joints=False,
         num_betas=10,
         sample_expression=True,
         num_expression_coeffs=10,
         use_face_contour=False):

    # open motion file
    motion = np.load(motion_file, allow_pickle=True)
    _motion = {}
    for k,v in motion.items():
        if isinstance(v, np.ndarray):
            print(k, motion[k].shape, motion[k].dtype)
            if motion[k].dtype in ("<U7", "<U5", "<U4", "object", "|S7"):
                _motion[k] = str(motion[k])
            else:
                _motion[k] = torch.from_numpy(motion[k]).float()
        else:
            print(k, v)
            _motion[k] = v
    motion = _motion

    if "poses" in motion:
        motion["global_orient"] = motion["root_orient"]
        motion["body_pose"] = motion["pose_body"] # seriously?
        motion["left_hand_pose"] = motion["pose_hand"][:,:45]
        motion["right_hand_pose"] = motion["pose_hand"][:,45:]

    num_betas = len(motion['betas'])
    gender = str(motion['gender'])

    model = smplx.create(model_folder, model_type=model_type,
                         gender=gender, use_face_contour=use_face_contour,
                         num_betas=num_betas,
                         num_expression_coeffs=num_expression_coeffs,
                         use_pca=False,
                         ext=ext)

    betas, expression = motion['betas'], None
    betas = betas.unsqueeze(0)[:, :model.num_betas]
    global_orient = motion['global_orient']
    body_pose = motion['body_pose']
    left_hand_pose = motion['left_hand_pose']
    right_hand_pose = motion['right_hand_pose']
    # if sample_expression:
    #     expression = torch.randn(
    #         [1, model.num_expression_coeffs], dtype=torch.float32)

    #print(expression)
    #print(betas.shape, body_pose.shape, expression.shape)
    for pose_idx in trange(body_pose.size(0)):
        pose_idx = [pose_idx]
        # output = model(betas=betas, # expression=expression,
        #                return_verts=True)
        # for x in [betas, global_orient, body_pose, left_hand_pose, right_hand_pose]:
        #     print(x.dtype, x.shape)
        output = model(
                betas=betas,
                global_orient=global_orient[pose_idx],
                body_pose=body_pose[pose_idx],
                left_hand_pose=left_hand_pose[pose_idx],
                right_hand_pose=right_hand_pose[pose_idx],
                # expression=expression,
                return_verts=True
                )
        vertices = output.vertices.detach().cpu().numpy().squeeze()
        joints = output.joints.detach().cpu().numpy().squeeze()

        vertex_colors = np.ones([vertices.shape[0], 4]) * [0.3, 0.3, 0.3, 0.8]
        tri_mesh = trimesh.Trimesh(vertices, model.faces,
                                    vertex_colors=vertex_colors)

        mesh = pyrender.Mesh.from_trimesh(tri_mesh)

        scene = pyrender.Scene()
        scene.add(mesh)

        if plot_joints:
            sm = trimesh.creation.uv_sphere(radius=0.005)
            sm.visual.vertex_colors = [0.9, 0.1, 0.1, 1.0]
            tfs = np.tile(np.eye(4), (len(joints), 1, 1))
            tfs[:, :3, 3] = joints
            joints_pcl = pyrender.Mesh.from_trimesh(sm, poses=tfs)
            scene.add(joints_pcl)

        pyrender.Viewer(scene, use_raymond_lighting=True)


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='SMPL-X Demo')

    parser.add_argument('--model-folder', required=True, type=str,
                        help='The path to the model folder')
    parser.add_argument('--motion-file', required=True, type=str,
                        help='The path to the motion file to process')
    parser.add_argument('--num-expression-coeffs', default=10, type=int,
                        dest='num_expression_coeffs',
                        help='Number of expression coefficients.')
    parser.add_argument('--ext', type=str, default='npz',
                        help='Which extension to use for loading')
    parser.add_argument('--sample-expression', default=True,
                        dest='sample_expression',
                        type=lambda arg: arg.lower() in ['true', '1'],
                        help='Sample a random expression')
    parser.add_argument('--use-face-contour', default=False,
                        type=lambda arg: arg.lower() in ['true', '1'],
                        help='Compute the contour of the face')

    args = parser.parse_args()

    def resolve(path):
        return osp.expanduser(osp.expandvars(path))
    model_folder = resolve(args.model_folder)
    motion_file = resolve(args.motion_file)
    ext = args.ext
    num_expression_coeffs = args.num_expression_coeffs
    sample_expression = args.sample_expression

    main(model_folder, motion_file, ext=ext,
         sample_expression=sample_expression,
         use_face_contour=args.use_face_contour)