File size: 4,694 Bytes
c3d0293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2020 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: Vassilis Choutas, [email protected]

import sys
from typing import NewType, List, Dict, Optional
import os
import os.path as osp

import pickle

import torch
import torch.nn as nn
import torch.nn.functional as F

from omegaconf import OmegaConf
from loguru import logger

from SMPLX.transfer_model.utils.typing import Tensor


def rotation_matrix_to_cont_repr(x: Tensor) -> Tensor:
    assert len(x.shape) == 3, (
        f'Expects an array of size Bx3x3, but received {x.shape}')
    return x[:, :3, :2]


def cont_repr_to_rotation_matrix(
    x: Tensor
) -> Tensor:
    ''' Converts tensor in continous representation to rotation matrices
    '''
    batch_size = x.shape[0]
    reshaped_input = x.view(-1, 3, 2)

    # Normalize the first vector
    b1 = F.normalize(reshaped_input[:, :, 0].clone(), dim=1)

    dot_prod = torch.sum(
        b1 * reshaped_input[:, :, 1].clone(), dim=1, keepdim=True)
    # Compute the second vector by finding the orthogonal complement to it
    b2 = F.normalize(reshaped_input[:, :, 1] - dot_prod * b1, dim=1)
    # Finish building the basis by taking the cross product
    b3 = torch.cross(b1, b2, dim=1)
    rot_mats = torch.stack([b1, b2, b3], dim=-1)

    return rot_mats.view(batch_size, -1, 3, 3)


def batch_rodrigues(
    rot_vecs: Tensor,
    epsilon: float = 1e-8
) -> Tensor:
    ''' Calculates the rotation matrices for a batch of rotation vectors
        Parameters
        ----------
        rot_vecs: torch.tensor Nx3
            array of N axis-angle vectors
        Returns
        -------
        R: torch.tensor Nx3x3
            The rotation matrices for the given axis-angle parameters
    '''
    assert len(rot_vecs.shape) == 2, (
        f'Expects an array of size Bx3, but received {rot_vecs.shape}')

    batch_size = rot_vecs.shape[0]
    device = rot_vecs.device
    dtype = rot_vecs.dtype

    angle = torch.norm(rot_vecs + epsilon, dim=1, keepdim=True, p=2)
    rot_dir = rot_vecs / angle

    cos = torch.unsqueeze(torch.cos(angle), dim=1)
    sin = torch.unsqueeze(torch.sin(angle), dim=1)

    # Bx1 arrays
    rx, ry, rz = torch.split(rot_dir, 1, dim=1)
    K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device)

    zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device)
    K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \
        .view((batch_size, 3, 3))

    ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0)
    rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K)
    return rot_mat


def batch_rot2aa(
    Rs: Tensor, epsilon: float = 1e-7
) -> Tensor:
    """
    Rs is B x 3 x 3
    void cMathUtil::RotMatToAxisAngle(const tMatrix& mat, tVector& out_axis,
                                      double& out_theta)
    {
        double c = 0.5 * (mat(0, 0) + mat(1, 1) + mat(2, 2) - 1);
        c = cMathUtil::Clamp(c, -1.0, 1.0);

        out_theta = std::acos(c);

        if (std::abs(out_theta) < 0.00001)
        {
            out_axis = tVector(0, 0, 1, 0);
        }
        else
        {
            double m21 = mat(2, 1) - mat(1, 2);
            double m02 = mat(0, 2) - mat(2, 0);
            double m10 = mat(1, 0) - mat(0, 1);
            double denom = std::sqrt(m21 * m21 + m02 * m02 + m10 * m10);
            out_axis[0] = m21 / denom;
            out_axis[1] = m02 / denom;
            out_axis[2] = m10 / denom;
            out_axis[3] = 0;
        }
    }
    """

    cos = 0.5 * (torch.einsum('bii->b', [Rs]) - 1)
    cos = torch.clamp(cos, -1 + epsilon, 1 - epsilon)

    theta = torch.acos(cos)

    m21 = Rs[:, 2, 1] - Rs[:, 1, 2]
    m02 = Rs[:, 0, 2] - Rs[:, 2, 0]
    m10 = Rs[:, 1, 0] - Rs[:, 0, 1]
    denom = torch.sqrt(m21 * m21 + m02 * m02 + m10 * m10 + epsilon)

    axis0 = torch.where(torch.abs(theta) < 0.00001, m21, m21 / denom)
    axis1 = torch.where(torch.abs(theta) < 0.00001, m02, m02 / denom)
    axis2 = torch.where(torch.abs(theta) < 0.00001, m10, m10 / denom)

    return theta.unsqueeze(1) * torch.stack([axis0, axis1, axis2], 1)