import gradio as gr import hopsworks project = hopsworks.login(project="DD2223_lab1") fs = project.get_feature_store() dataset_api = project.get_dataset_api() dataset_api.download("Resources/images/latest_wine.txt") dataset_api.download("Resources/images/actual_wine.txt") dataset_api.download("Resources/images/df_recent.png") dataset_api.download("Resources/images/wine_confusion_matrix.png") # Function to read text from a file and return it def read_text_file(file_path): with open(file_path, 'r') as file: content = file.read() return content with gr.Blocks() as demo: with gr.Row(): with gr.Column(): gr.Label("Today's Predicted Wine Quality") input = gr.Text(read_text_file("latest_wine.txt"), elem_id="recent-text") with gr.Column(): gr.Label("Today's Actual Wine Quality") input = gr.Text(read_text_file("actual_wine.txt"), elem_id="recent-text") with gr.Row(): with gr.Column(): gr.Label("Recent Prediction History") input = gr.Image("df_recent.png", elem_id="recent-predictions") with gr.Column(): gr.Label("Confusion Maxtrix with Historical Prediction Performance") input_img = gr.Image("wine_confusion_matrix.png", elem_id="confusion-matrix") demo.launch()