Spaces:
Runtime error
Runtime error
PAVULURI KIRAN
commited on
Commit
·
9c37d23
1
Parent(s):
146a932
Initial commit
Browse files- Dockerfile +20 -0
- app.py +81 -0
- requirement.txt +6 -0
Dockerfile
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use an official Python runtime
|
2 |
+
FROM python:3.10
|
3 |
+
|
4 |
+
# Set the working directory
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Copy the requirements file
|
8 |
+
COPY requirements.txt .
|
9 |
+
|
10 |
+
# Install dependencies
|
11 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
12 |
+
|
13 |
+
# Copy the FastAPI app file
|
14 |
+
COPY app.py .
|
15 |
+
|
16 |
+
# Expose the port FastAPI runs on
|
17 |
+
EXPOSE 7860
|
18 |
+
|
19 |
+
# Command to run FastAPI using Uvicorn
|
20 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile
|
2 |
+
import torch
|
3 |
+
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
4 |
+
from PIL import Image
|
5 |
+
import io
|
6 |
+
import base64
|
7 |
+
|
8 |
+
# Initialize FastAPI app
|
9 |
+
app = FastAPI()
|
10 |
+
|
11 |
+
# Load the model and processor from Hugging Face
|
12 |
+
model_name = "mervinpraison/Llama-3.2-11B-Vision-Radiology-mini"
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
|
15 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
16 |
+
model = LlavaForConditionalGeneration.from_pretrained(model_name).to(device)
|
17 |
+
|
18 |
+
@app.post("/predict/")
|
19 |
+
async def predict(file: UploadFile = File(...)):
|
20 |
+
try:
|
21 |
+
# Read image
|
22 |
+
image_bytes = await file.read()
|
23 |
+
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
24 |
+
|
25 |
+
# Convert image to base64 (for compatibility with reference implementation)
|
26 |
+
buffered = io.BytesIO()
|
27 |
+
image.save(buffered, format="JPEG")
|
28 |
+
base64_image = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
29 |
+
|
30 |
+
# Step 1: Validate Image Type (Ensure it’s an X-ray or CT scan)
|
31 |
+
validation_prompt = "Is this a medical X-ray or CT scan? Answer only 'yes' or 'no'."
|
32 |
+
validation_inputs = processor(text=validation_prompt, images=image, return_tensors="pt").to(device)
|
33 |
+
|
34 |
+
with torch.no_grad():
|
35 |
+
validation_output = model.generate(**validation_inputs, max_new_tokens=10, temperature=0.1, top_p=0.7, top_k=50, repetition_penalty=1)
|
36 |
+
|
37 |
+
validation_result = processor.batch_decode(validation_output, skip_special_tokens=True)[0].strip().lower()
|
38 |
+
|
39 |
+
if "yes" not in validation_result:
|
40 |
+
return {"error": "Uploaded image is not an X-ray or CT scan. Please upload a valid medical imaging scan."}
|
41 |
+
|
42 |
+
# Step 2: Generate Structured Medical Analysis
|
43 |
+
analysis_prompt = """Please analyze this X-ray image and provide a detailed medical report using the following format:
|
44 |
+
|
45 |
+
Type of X-ray:
|
46 |
+
[Describe the type and orientation of the X-ray]
|
47 |
+
|
48 |
+
Key Findings:
|
49 |
+
• [List each finding on a new line with a bullet point]
|
50 |
+
• [Focus on normal and abnormal findings]
|
51 |
+
• [Include major anatomical structures]
|
52 |
+
|
53 |
+
Potential Conditions:
|
54 |
+
• [List potential conditions based on findings]
|
55 |
+
• [Include likelihood assessments]
|
56 |
+
|
57 |
+
Recommendations:
|
58 |
+
• [Provide any follow-up recommendations]
|
59 |
+
|
60 |
+
Please provide the analysis in plain text without any special characters or markdown formatting."""
|
61 |
+
|
62 |
+
analysis_inputs = processor(text=analysis_prompt, images=image, return_tensors="pt").to(device)
|
63 |
+
|
64 |
+
with torch.no_grad():
|
65 |
+
analysis_output = model.generate(**analysis_inputs, max_new_tokens=512, temperature=0.7, top_p=0.7, top_k=50, repetition_penalty=1)
|
66 |
+
|
67 |
+
analysis_content = processor.batch_decode(analysis_output, skip_special_tokens=True)[0]
|
68 |
+
|
69 |
+
# Step 3: Clean Up Response (Remove special characters, markdown formatting)
|
70 |
+
cleaned_analysis = (
|
71 |
+
analysis_content.replace("**", "") # Remove double asterisks
|
72 |
+
.replace("*", "•") # Replace single asterisks with bullet points
|
73 |
+
.replace("_", "") # Remove underscores
|
74 |
+
.replace("#", "") # Remove markdown headers
|
75 |
+
.strip()
|
76 |
+
)
|
77 |
+
|
78 |
+
return {"analysis": cleaned_analysis}
|
79 |
+
|
80 |
+
except Exception as e:
|
81 |
+
return {"error": str(e)}
|
requirement.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
torch
|
4 |
+
transformers
|
5 |
+
pillow
|
6 |
+
python-multipart
|