File size: 8,650 Bytes
6934c92
c19ca3d
cecea50
6934c92
 
cecea50
64076fa
136da9a
a0f4ef6
6934c92
c19ca3d
a0f4ef6
398c57e
c19ca3d
 
 
 
 
 
 
64076fa
c19ca3d
cecea50
c19ca3d
3ab7af1
ec8e06b
19fb882
 
3b76114
a0f4ef6
c19ca3d
 
a0f4ef6
77feb08
 
 
c19ca3d
64076fa
a0f4ef6
64076fa
 
c19ca3d
a0f4ef6
 
 
 
c19ca3d
a0f4ef6
 
c19ca3d
64076fa
 
77feb08
136da9a
64076fa
 
 
a0f4ef6
 
64076fa
 
 
 
a0f4ef6
64076fa
c19ca3d
ba5d0dc
dacf550
24b78e9
 
 
c19ca3d
ba5d0dc
c19ca3d
ba5d0dc
 
 
 
 
4dce6a9
a0f4ef6
 
c19ca3d
a0f4ef6
136da9a
c19ca3d
64076fa
c19ca3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6934c92
 
 
3b76114
05463dd
6934c92
 
c1dedc3
c19ca3d
 
6934c92
cecea50
c19ca3d
a0f4ef6
 
c19ca3d
64076fa
a0f4ef6
 
 
64076fa
 
 
c19ca3d
3aca9f1
6934c92
cecea50
a0f4ef6
64076fa
b45c25c
cecea50
3ab7af1
cecea50
 
c19ca3d
 
64076fa
136da9a
64076fa
 
c19ca3d
a0f4ef6
77feb08
 
a0f4ef6
64076fa
05463dd
6934c92
 
a0f4ef6
ec8e06b
bfce642
c19ca3d
3aca9f1
6934c92
3aca9f1
05463dd
6934c92
 
 
c19ca3d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
from diffusers import AutoencoderKLWan, WanPipeline, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
import gradio as gr
import tempfile
import spaces
import numpy as np
from PIL import Image
import random

MODEL_ID = "FastVideo/FastWan2.2-TI2V-5B-FullAttn-Diffusers"
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)

# Initialize pipelines
text_to_video_pipe = WanPipeline.from_pretrained(MODEL_ID, vae=vae, torch_dtype=torch.bfloat16)
image_to_video_pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID, vae=vae, torch_dtype=torch.bfloat16)

for pipe in [text_to_video_pipe, image_to_video_pipe]:
    pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
    pipe.to("cuda")

# Constants
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 896
DEFAULT_W_SLIDER_VALUE = 896
NEW_FORMULA_MAX_AREA = 720 * 1024
SLIDER_MIN_H, SLIDER_MAX_H = 256, 1024
SLIDER_MIN_W, SLIDER_MAX_W = 256, 1024
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 24
MIN_FRAMES_MODEL = 25
MAX_FRAMES_MODEL = 193

default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"

def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area, min_slider_h, max_slider_h, min_slider_w, max_slider_w, default_h, default_w):
    orig_w, orig_h = pil_image.size
    if orig_w <= 0 or orig_h <= 0:
        return default_h, default_w
    aspect_ratio = orig_h / orig_w

    calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
    calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
    calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
    calc_w = max(mod_val, (calc_w // mod_val) * mod_val)

    new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
    new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))

    return new_h, new_w

def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
    if uploaded_pil_image is None:
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
    try:
        new_h, new_w = _calculate_new_dimensions_wan(
            uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
            SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
            DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
        )
        return gr.update(value=new_h), gr.update(value=new_w)
    except Exception as e:
        gr.Warning("Error attempting to calculate new dimensions")
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
        
def get_duration(input_image, prompt, height, width, 
                   negative_prompt, duration_seconds,
                   guidance_scale, steps,
                   seed, randomize_seed, 
                   progress):
    if steps > 4 and duration_seconds > 4:
        return 90
    elif steps > 4 or duration_seconds > 4:
        return 75
    else:
        return 60

@spaces.GPU(duration=get_duration)
def generate_video(input_image, prompt, height, width, negative_prompt=default_negative_prompt, duration_seconds=2, guidance_scale=0, steps=4, seed=44, randomize_seed=False, progress=gr.Progress(track_tqdm=True)):
    target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
    target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)

    num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)

    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)

    if input_image is not None:
        resized_image = input_image.resize((target_w, target_h))
        with torch.inference_mode():
            output_frames_list = image_to_video_pipe(
                image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
                height=target_h, width=target_w, num_frames=num_frames,
                guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
                generator=torch.Generator(device="cuda").manual_seed(current_seed)
            ).frames[0]
    else:
        with torch.inference_mode():
            output_frames_list = text_to_video_pipe(
                prompt=prompt, negative_prompt=negative_prompt,
                height=target_h, width=target_w, num_frames=num_frames,
                guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
                generator=torch.Generator(device="cuda").manual_seed(current_seed)
            ).frames[0]

    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name
    export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
    return video_path, current_seed

with gr.Blocks() as demo:
    gr.Markdown("# Fast Wan 2.2 TI2V 5B Demo")
    gr.Markdown("""This Demo is using [FastWan2.2-TI2V-5B](https://huggingface.co/FastVideo/FastWan2.2-TI2V-5B-FullAttn-Diffusers) which is fine-tuned with Sparse-distill method which allows wan to generate high quality videos in 3-5 steps.""")

    with gr.Row():
        with gr.Column():
            input_image_component = gr.Image(type="pil", label="Input Image (optional, auto-resized to target H/W)")
            prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
            duration_seconds_input = gr.Slider(minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1), step=0.1, value=2, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")

            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
                seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
                randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
                with gr.Row():
                    height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
                    width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
                steps_slider = gr.Slider(minimum=1, maximum=8, step=1, value=4, label="Inference Steps")
                guidance_scale_input = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.0, label="Guidance Scale")
            generate_button = gr.Button("Generate Video", variant="primary")
        with gr.Column():
            video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)

    input_image_component.upload(
        fn=handle_image_upload_for_dims_wan,
        inputs=[input_image_component, height_input, width_input],
        outputs=[height_input, width_input]
    )

    input_image_component.clear(
        fn=handle_image_upload_for_dims_wan,
        inputs=[input_image_component, height_input, width_input],
        outputs=[height_input, width_input]
    )

    ui_inputs = [
        input_image_component, prompt_input, height_input, width_input,
        negative_prompt_input, duration_seconds_input,
        guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
    ]
    generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])

    gr.Examples(
        examples=[ 
            [None, "A person eating spaghetti", 1024, 720],
            ["cat.png", "The cat removes the glasses from its eyes.", 1088, 800],
            [None, "a penguin playfully dancing in the snow, Antarctica", 1024, 720],
            ["peng.png", "a penguin running towards camera joyfully, Antarctica", 896, 512],
        ],
        
        inputs=[input_image_component, prompt_input, height_input, width_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy"
    )

if __name__ == "__main__":
    demo.queue().launch()