Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -25,7 +25,7 @@ model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
|
| 25 |
model.to(device)
|
| 26 |
|
| 27 |
processor = AutoProcessor.from_pretrained(MODEL_NAME)
|
| 28 |
-
tokenizer = WhisperTokenizer.from_pretrained(MODEL_NAME
|
| 29 |
|
| 30 |
pipe = pipeline(
|
| 31 |
task="automatic-speech-recognition",
|
|
@@ -55,6 +55,24 @@ def transcribe(inputs, previous_transcription):
|
|
| 55 |
print(f"Error during Transcription: {e}")
|
| 56 |
return previous_transcription, "Error"
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
def clear():
|
| 60 |
return ""
|
|
@@ -72,7 +90,7 @@ with gr.Blocks() as microphone:
|
|
| 72 |
input_audio_microphone.stream(transcribe, [input_audio_microphone, output], [output, latency_textbox], time_limit=45, stream_every=2, concurrency_limit=None)
|
| 73 |
clear_button.click(clear, outputs=[output])
|
| 74 |
|
| 75 |
-
with gr.Blocks() as
|
| 76 |
with gr.Column():
|
| 77 |
gr.Markdown(f"# Realtime Whisper Large V3 Turbo: \n Transcribe Audio in Realtime. This Demo uses the Checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers.\n Note: The first token takes about 5 seconds. After that, it works flawlessly.")
|
| 78 |
with gr.Row():
|
|
@@ -86,7 +104,20 @@ with gr.Blocks() as flie:
|
|
| 86 |
submit_button.click(transcribe, [input_audio_microphone, output], [output, latency_textbox], concurrency_limit=None)
|
| 87 |
clear_button.click(clear, outputs=[output])
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
with gr.Blocks() as demo:
|
| 90 |
-
gr.TabbedInterface([microphone,
|
| 91 |
|
| 92 |
demo.launch()
|
|
|
|
| 25 |
model.to(device)
|
| 26 |
|
| 27 |
processor = AutoProcessor.from_pretrained(MODEL_NAME)
|
| 28 |
+
tokenizer = WhisperTokenizer.from_pretrained(MODEL_NAME)
|
| 29 |
|
| 30 |
pipe = pipeline(
|
| 31 |
task="automatic-speech-recognition",
|
|
|
|
| 55 |
print(f"Error during Transcription: {e}")
|
| 56 |
return previous_transcription, "Error"
|
| 57 |
|
| 58 |
+
@spaces.GPU
|
| 59 |
+
def translate_and_transcribe(inputs, previous_transcription):
|
| 60 |
+
start_time = time.time()
|
| 61 |
+
try:
|
| 62 |
+
filename = f"{uuid.uuid4().hex}.wav"
|
| 63 |
+
sample_rate, audio_data = inputs
|
| 64 |
+
scipy.io.wavfile.write(filename, sample_rate, audio_data)
|
| 65 |
+
|
| 66 |
+
translation = pipe(filename, language="<|es|>" , generate_kwargs={"task": "translate"} )["text"]
|
| 67 |
+
|
| 68 |
+
previous_transcription += translation
|
| 69 |
+
|
| 70 |
+
end_time = time.time()
|
| 71 |
+
latency = end_time - start_time
|
| 72 |
+
return previous_transcription, f"{latency:.2f}"
|
| 73 |
+
except Exception as e:
|
| 74 |
+
print(f"Error during Translation and Transcription: {e}")
|
| 75 |
+
return previous_transcription, "Error"
|
| 76 |
|
| 77 |
def clear():
|
| 78 |
return ""
|
|
|
|
| 90 |
input_audio_microphone.stream(transcribe, [input_audio_microphone, output], [output, latency_textbox], time_limit=45, stream_every=2, concurrency_limit=None)
|
| 91 |
clear_button.click(clear, outputs=[output])
|
| 92 |
|
| 93 |
+
with gr.Blocks() as file:
|
| 94 |
with gr.Column():
|
| 95 |
gr.Markdown(f"# Realtime Whisper Large V3 Turbo: \n Transcribe Audio in Realtime. This Demo uses the Checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers.\n Note: The first token takes about 5 seconds. After that, it works flawlessly.")
|
| 96 |
with gr.Row():
|
|
|
|
| 104 |
submit_button.click(transcribe, [input_audio_microphone, output], [output, latency_textbox], concurrency_limit=None)
|
| 105 |
clear_button.click(clear, outputs=[output])
|
| 106 |
|
| 107 |
+
with gr.Blocks() as translate:
|
| 108 |
+
with gr.Column():
|
| 109 |
+
gr.Markdown(f"# Realtime Whisper Large V3 Turbo (Translation): \n Transcribe and Translate Audio in Realtime. This Demo uses the Checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers.\n Note: The first token takes about 5 seconds. After that, it works flawlessly.")
|
| 110 |
+
with gr.Row():
|
| 111 |
+
input_audio_microphone = gr.Audio(streaming=True)
|
| 112 |
+
output = gr.Textbox(label="Transcription and Translation", value="")
|
| 113 |
+
latency_textbox = gr.Textbox(label="Latency (seconds)", value="0.0", scale=0)
|
| 114 |
+
with gr.Row():
|
| 115 |
+
clear_button = gr.Button("Clear Output")
|
| 116 |
+
|
| 117 |
+
input_audio_microphone.stream(translate_and_transcribe, [input_audio_microphone, output], [output, latency_textbox], time_limit=45, stream_every=2, concurrency_limit=None)
|
| 118 |
+
clear_button.click(clear, outputs=[output])
|
| 119 |
+
|
| 120 |
with gr.Blocks() as demo:
|
| 121 |
+
gr.TabbedInterface([microphone, translate, file], ["Microphone", "Realtime Translation", "Transcribe from file"])
|
| 122 |
|
| 123 |
demo.launch()
|