Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,10 +6,9 @@ import tempfile
|
|
| 6 |
import os
|
| 7 |
import uuid
|
| 8 |
import scipy.io.wavfile
|
| 9 |
-
import numpy as np
|
| 10 |
|
| 11 |
MODEL_NAME = "ylacombe/whisper-large-v3-turbo"
|
| 12 |
-
BATCH_SIZE =
|
| 13 |
device = 0 if torch.cuda.is_available() else "cpu"
|
| 14 |
|
| 15 |
pipe = pipeline(
|
|
@@ -22,31 +21,34 @@ pipe = pipeline(
|
|
| 22 |
@spaces.GPU
|
| 23 |
def transcribe(inputs, previous_transcription):
|
| 24 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
sample_rate, audio_data = inputs
|
| 26 |
|
| 27 |
-
#
|
| 28 |
-
|
| 29 |
|
| 30 |
-
#
|
| 31 |
-
transcription = pipe(
|
| 32 |
-
|
| 33 |
-
generate_kwargs={"task": "transcribe"},
|
| 34 |
-
return_timestamps=True)
|
| 35 |
|
| 36 |
-
#
|
| 37 |
-
|
| 38 |
|
| 39 |
return previous_transcription
|
| 40 |
except Exception as e:
|
| 41 |
-
print(f"Error during
|
| 42 |
-
return
|
| 43 |
|
| 44 |
with gr.Blocks() as demo:
|
| 45 |
with gr.Column():
|
| 46 |
-
gr.Markdown(f"# Realtime Whisper Large V3 Turbo: Transcribe Audio\n Transcribe
|
| 47 |
input_audio_microphone = gr.Audio(streaming=True)
|
| 48 |
output = gr.Textbox(label="Transcription", value="")
|
| 49 |
|
| 50 |
input_audio_microphone.stream(transcribe, [input_audio_microphone, output], [output], time_limit=45, stream_every=2, concurrency_limit=None)
|
| 51 |
|
| 52 |
-
demo.queue().launch()
|
|
|
|
| 6 |
import os
|
| 7 |
import uuid
|
| 8 |
import scipy.io.wavfile
|
|
|
|
| 9 |
|
| 10 |
MODEL_NAME = "ylacombe/whisper-large-v3-turbo"
|
| 11 |
+
BATCH_SIZE = 16
|
| 12 |
device = 0 if torch.cuda.is_available() else "cpu"
|
| 13 |
|
| 14 |
pipe = pipeline(
|
|
|
|
| 21 |
@spaces.GPU
|
| 22 |
def transcribe(inputs, previous_transcription):
|
| 23 |
try:
|
| 24 |
+
# Generate a unique filename Using UUID
|
| 25 |
+
filename = f"{uuid.uuid4().hex}.wav"
|
| 26 |
+
filepath = os.path.join(tempfile.gettempdir(), filename)
|
| 27 |
+
|
| 28 |
+
# Extract Sample Rate and Audio Data from the Tuple
|
| 29 |
sample_rate, audio_data = inputs
|
| 30 |
|
| 31 |
+
# Save the Audio Data to the Temporary File
|
| 32 |
+
scipy.io.wavfile.write(filepath, sample_rate, audio_data)
|
| 33 |
|
| 34 |
+
# Transcribe the Audio
|
| 35 |
+
transcription = pipe(filepath, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
|
| 36 |
+
previous_transcription += transcription
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
# Remove the Temporary File after Transcription
|
| 39 |
+
os.remove(filepath)
|
| 40 |
|
| 41 |
return previous_transcription
|
| 42 |
except Exception as e:
|
| 43 |
+
print(f"Error during Transcription: {e}")
|
| 44 |
+
return previous Transcription
|
| 45 |
|
| 46 |
with gr.Blocks() as demo:
|
| 47 |
with gr.Column():
|
| 48 |
+
gr.Markdown(f"# Realtime Whisper Large V3 Turbo: Transcribe Audio\n Transcribe Inputs in Realtime. This Demo uses the Checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers.")
|
| 49 |
input_audio_microphone = gr.Audio(streaming=True)
|
| 50 |
output = gr.Textbox(label="Transcription", value="")
|
| 51 |
|
| 52 |
input_audio_microphone.stream(transcribe, [input_audio_microphone, output], [output], time_limit=45, stream_every=2, concurrency_limit=None)
|
| 53 |
|
| 54 |
+
demo.queue(). launch()
|