import torch import torch.nn as nn import wget import json import os TEXT_TO_VIDEO_FOLDER = "./TextToVideoModel" TEXT_TO_VIDEO_MODEL_WEIGHTS = "pytorch_model.bin" TEXT_TO_VIDEO_CONFIG = "config.json" TEXT_TO_VIDEO_VOCAB = "vocab.json" TEXT_TO_VIDEO_MODEL_WEIGHTS_URL = "https://huggingface.co/Searchium-ai/clip4clip-webvid150k/resolve/main/pytorch_model.bin" TEXT_TO_VIDEO_CONFIG_URL = "https://huggingface.co/Searchium-ai/clip4clip-webvid150k/resolve/main/config.json" TEXT_TO_VIDEO_VOCAB_URL = "https://huggingface.co/Searchium-ai/clip4clip-webvid150k/resolve/main/vocab.json" TEXT_TO_VIDEO_FILES_URLS = [ (TEXT_TO_VIDEO_MODEL_WEIGHTS_URL, TEXT_TO_VIDEO_MODEL_WEIGHTS), (TEXT_TO_VIDEO_CONFIG_URL, TEXT_TO_VIDEO_CONFIG), (TEXT_TO_VIDEO_VOCAB_URL, TEXT_TO_VIDEO_VOCAB), ] def ensure_text_to_video_files_exist(): os.makedirs(TEXT_TO_VIDEO_FOLDER, exist_ok=True) for url, filename in TEXT_TO_VIDEO_FILES_URLS: filepath = os.path.join(TEXT_TO_VIDEO_FOLDER, filename) if not os.path.exists(filepath): wget.download(url, out=filepath) class Clip4ClipModel(nn.Module): def __init__(self, num_classes): super().__init__() self.fc = nn.Linear(100, num_classes) def forward(self, x): logits = self.fc(x) return logits