import os import torch import torch.nn as nn import torch.nn.functional as F import wget import json from tqdm import tqdm GPT2_FOLDER = "./GPT2" MODEL_FILE = "gpt2-pytorch_model.bin" ENCODER_FILE = "encoder.json" VOCAB_FILE = "vocab.bpe" MODEL_URL = "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin" ENCODER_URL = "https://raw.githubusercontent.com/graykode/gpt-2-Pytorch/refs/heads/master/GPT2/GPT2/encoder.json" VOCAB_URL = "https://raw.githubusercontent.com/graykode/gpt-2-Pytorch/refs/heads/master/GPT2/GPT2/vocab.bpe" MAX_LENGTH = 1024 END_OF_TEXT_TOKEN = "<|endoftext|>" def ensure_gpt2_files_exist(): if not os.path.exists(os.path.join(GPT2_FOLDER, MODEL_FILE)): wget.download(MODEL_URL, out=os.path.join(GPT2_FOLDER, MODEL_FILE)) if not os.path.exists(os.path.join(GPT2_FOLDER, ENCODER_FILE)): wget.download(ENCODER_URL, out=os.path.join(GPT2_FOLDER, ENCODER_FILE)) if not os.path.exists(os.path.join(GPT2_FOLDER, VOCAB_FILE)): wget.download(VOCAB_URL, out=os.path.join(GPT2_FOLDER, VOCAB_FILE)) class GPT2Config: def __init__(self, vocab_size_or_config_json_file=50257, n_positions=MAX_LENGTH, n_ctx=MAX_LENGTH, n_embd=768, n_layer=12, n_head=12, layer_norm_epsilon=1e-5, initializer_range=0.02): self.vocab_size = vocab_size_or_config_json_file self.n_ctx = n_ctx self.n_positions = n_positions self.n_embd = n_embd self.n_layer = n_layer self.n_head = n_head self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range class GPT2LMHeadModel(nn.Module): def __init__(self, config): super().__init__() self.transformer = GPT2Model(config) self.lm_head = GPT2LMHead(self.transformer.wte.weight, config) def forward(self, input_ids, position_ids=None, token_type_ids=None, past=None): lm_logits, presents = self.transformer(input_ids, position_ids, token_type_ids, past) return lm_logits, presents class GPT2Model(nn.Module): def __init__(self, config): super().__init__() self.n_layer = config.n_layer self.n_embd = config.n_embd self.n_vocab = config.vocab_size self.wte = nn.Embedding(config.vocab_size, config.n_embd) self.wpe = nn.Embedding(config.n_positions, config.n_embd) block = Block(config.n_ctx, config, scale=True) self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)]) self.ln_f = LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) def forward(self, input_ids, position_ids=None, token_type_ids=None, past=None): if past is None: past_length = 0 past = [None] * len(self.h) else: past_length = past[0][0].size(-2) if position_ids is None: position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) input_shape = input_ids.size() input_ids = input_ids.view(-1, input_ids.size(-1)) position_ids = position_ids.view(-1, position_ids.size(-1)) inputs_embeds = self.wte(input_ids) position_embeds = self.wpe(position_ids) if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) token_type_embeds = self.wte(token_type_ids) else: token_type_embeds = 0 hidden_states = inputs_embeds + position_embeds + token_type_embeds presents = [] for block, layer_past in zip(self.h, past): hidden_states, present = block(hidden_states, layer_past) presents.append(present) hidden_states = self.ln_f(hidden_states) output_shape = input_shape + (hidden_states.size(-1),) return hidden_states.view(*output_shape), presents class GPT2LMHead(nn.Module): def __init__(self, model_embeddings_weights, config): super().__init__() self.n_embd = config.n_embd self.decoder = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.decoder.weight = model_embeddings_weights def forward(self, hidden_state): lm_logits = self.decoder(hidden_state) return lm_logits class Block(nn.Module): def __init__(self, n_ctx, config, scale=False): super().__init__() nx = config.n_embd self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon) self.attn = Attention(nx, n_ctx, config, scale) self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon) self.mlp = MLP(4 * nx, config) def forward(self, x, layer_past=None): a, present = self.attn(self.ln_1(x), layer_past=layer_past) x = x + a m = self.mlp(self.ln_2(x)) x = x + m return x, present class Attention(nn.Module): def __init__(self, nx, n_ctx, config, scale=False): super().__init__() n_state = nx assert n_state % config.n_head == 0 self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx)) self.n_head = config.n_head self.split_size = n_state self.scale = scale self.c_attn = Conv1D(n_state * 3, nx) self.c_proj = Conv1D(n_state, nx) def _attn(self, q, k, v): w = torch.matmul(q, k) if self.scale: w = w / math.sqrt(v.size(-1)) nd, ns = w.size(-2), w.size(-1) b = self.bias[:, :, ns - nd:ns, :ns] w = w * b - 1e-10 * (1 - b) w = nn.Softmax(dim=-1)(w) return torch.matmul(w, v) def merge_heads(self, x): x = x.permute(0, 2, 1, 3).contiguous() new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),) return x.view(*new_x_shape) def split_heads(self, x, k=False): new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head) x = x.view(*new_x_shape) if k: return x.permute(0, 2, 3, 1) else: return x.permute(0, 2, 1, 3) def forward(self, x, layer_past=None): x = self.c_attn(x) query, key, value = x.split(self.split_size, dim=2) query = self.split_heads(query) key = self.split_heads(key, k=True) value = self.split_heads(value) if layer_past is not None: past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1] key = torch.cat((past_key, key), dim=-1) value = torch.cat((past_value, value), dim=-2) present = torch.stack((key.transpose(-2, -1), value)) a = self._attn(query, key, value) a = self.merge_heads(a) a = self.c_proj(a) return a, present class MLP(nn.Module): def __init__(self, n_state, config): super().__init__() nx = config.n_embd self.c_fc = Conv1D(n_state, nx) self.c_proj = Conv1D(nx, n_state) self.act = gelu def forward(self, x): h = self.act(self.c_fc(x)) h2 = self.c_proj(h) return h2 class Conv1D(nn.Module): def __init__(self, nf, nx): super().__init__() self.nf = nf w = torch.empty(nx, nf) nn.init.normal_(w, std=0.02) self.weight = Parameter(w) self.bias = Parameter(torch.zeros(nf)) def forward(self, x): size_out = x.size()[:-1] + (self.nf,) x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight) x = x.view(*size_out) return x class LayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12): super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x + self.bias def gelu(x): return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))