ddgdgd / stt_wav2vec2.py
Kfjjdjdjdhdhd's picture
Upload 13 files
f5790af verified
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
import wget
import json
import os
STT_FOLDER = "./STTModel"
STT_MODEL_NAME = "wav2vec2"
STT_MODEL_WEIGHTS = "pytorch_model.bin"
STT_CONFIG = "config.json"
STT_VOCAB = "vocab.json"
STT_MODEL_WEIGHTS_URL = "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/pytorch_model.bin"
STT_CONFIG_URL = "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json"
STT_VOCAB_URL = "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/vocab.json"
STT_FILES_URLS = [
(STT_MODEL_WEIGHTS_URL, STT_MODEL_WEIGHTS),
(STT_CONFIG_URL, STT_CONFIG),
(STT_VOCAB_URL, STT_VOCAB),
]
def ensure_stt_files_exist():
os.makedirs(STT_FOLDER, exist_ok=True)
for url, filename in STT_FILES_URLS:
filepath = os.path.join(STT_FOLDER, filename)
if not os.path.exists(filepath):
wget.download(url, out=filepath)
class Wav2Vec2ForCTC(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.conv1 = nn.Conv1d(1, 16, kernel_size=5, stride=2, padding=2)
self.relu1 = nn.ReLU()
self.pool1 = nn.MaxPool1d(kernel_size=2, stride=2)
self.conv2 = nn.Conv1d(16, 32, kernel_size=3, stride=2, padding=1)
self.relu2 = nn.ReLU()
self.pool2 = nn.MaxPool1d(kernel_size=2, stride=2)
self.fc = nn.Linear(32 * 39 * 40, num_classes) # Adjusted input size
def forward(self, x):
x = self.pool1(self.relu1(self.conv1(x)))
x = self.pool2(self.relu2(self.conv2(x)))
x = x.view(x.size(0), -1)
logits = self.fc(x)
return logits