Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import wget | |
import os | |
LIPSYNC_FOLDER = "./LipSyncModel" | |
LIPSYNC_MODEL_WEIGHTS = "lipsync_expert.pth" | |
LIPSYNC_MODEL_WEIGHTS_URL = "https://iiitaphyd-my.sharepoint.com/personal/radrabha_m_research_iiit_ac_in/_layouts/15/download.aspx?SourceUrl=%2Fpersonal%2Fradrabha%5Fm%5Fresearch%5Fiiit%5Fac%5Fin%2FDocuments%2FWav2Lip%5FModels%2Flipsync%5Fexpert%2Epth" | |
LIPSYNC_FILES_URLS = [ | |
(LIPSYNC_MODEL_WEIGHTS_URL, LIPSYNC_MODEL_WEIGHTS), | |
] | |
WAV2LIP_FOLDER = "./Wav2LipModel" | |
WAV2LIP_MODEL_WEIGHTS = "wav2lip_gan.pth" | |
WAV2LIP_MODEL_WEIGHTS_URL = "https://iiitaphyd-my.sharepoint.com/personal/radrabha_m_research_iiit_ac_in/_layouts/15/download.aspx?SourceUrl=%2Fpersonal%2Fradrabha%5Fm%5Fresearch%5Fiiit%5Fac%5Fin%2FDocuments%2FWav2Lip%5FModels%2Fwav2lip%5Fgan%2Epth" | |
WAV2LIP_FILES_URLS = [ | |
(WAV2LIP_MODEL_WEIGHTS_URL, WAV2LIP_MODEL_WEIGHTS), | |
] | |
def ensure_lipsync_files_exist(): | |
os.makedirs(LIPSYNC_FOLDER, exist_ok=True) | |
for url, filename in LIPSYNC_FILES_URLS: | |
filepath = os.path.join(LIPSYNC_FOLDER, filename) | |
if not os.path.exists(filepath): | |
try: | |
wget.download(url, out=filepath) | |
except Exception as e: | |
print(f"Warning: Download for {filename} failed, likely due to link restrictions. You may need to download it manually.") | |
def ensure_wav2lip_files_exist(): | |
os.makedirs(WAV2LIP_FOLDER, exist_ok=True) | |
for url, filename in WAV2LIP_FILES_URLS: | |
filepath = os.path.join(WAV2LIP_FOLDER, filename) | |
if not os.path.exists(filepath): | |
try: | |
wget.download(url, out=filepath) | |
except Exception as e: | |
print(f"Warning: Download for {filename} failed, likely due to link restrictions. You may need to download it manually.") | |
class LipSyncModel(nn.Module): | |
def __init__(self, num_classes): | |
super().__init__() | |
self.fc = nn.Linear(100, num_classes) | |
def forward(self, x): | |
logits = self.fc(x) | |
return logits | |
class Wav2LipModel(nn.Module): | |
def __init__(self, num_classes): | |
super().__init__() | |
self.fc = nn.Linear(100, num_classes) | |
def forward(self, x): | |
logits = self.fc(x) | |
return logits |