Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import wget | |
import json | |
from tqdm import tqdm | |
GPT2_FOLDER = "./GPT2" | |
MODEL_FILE = "gpt2-pytorch_model.bin" | |
ENCODER_FILE = "encoder.json" | |
VOCAB_FILE = "vocab.bpe" | |
MODEL_URL = "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin" | |
ENCODER_URL = "https://raw.githubusercontent.com/graykode/gpt-2-Pytorch/refs/heads/master/GPT2/GPT2/encoder.json" | |
VOCAB_URL = "https://raw.githubusercontent.com/graykode/gpt-2-Pytorch/refs/heads/master/GPT2/GPT2/vocab.bpe" | |
MAX_LENGTH = 1024 | |
END_OF_TEXT_TOKEN = "<|endoftext|>" | |
def ensure_gpt2_files_exist(): | |
if not os.path.exists(os.path.join(GPT2_FOLDER, MODEL_FILE)): | |
wget.download(MODEL_URL, out=os.path.join(GPT2_FOLDER, MODEL_FILE)) | |
if not os.path.exists(os.path.join(GPT2_FOLDER, ENCODER_FILE)): | |
wget.download(ENCODER_URL, out=os.path.join(GPT2_FOLDER, ENCODER_FILE)) | |
if not os.path.exists(os.path.join(GPT2_FOLDER, VOCAB_FILE)): | |
wget.download(VOCAB_URL, out=os.path.join(GPT2_FOLDER, VOCAB_FILE)) | |
class GPT2Config: | |
def __init__(self, vocab_size_or_config_json_file=50257, n_positions=MAX_LENGTH, n_ctx=MAX_LENGTH, n_embd=768, n_layer=12, n_head=12, layer_norm_epsilon=1e-5, initializer_range=0.02): | |
self.vocab_size = vocab_size_or_config_json_file | |
self.n_ctx = n_ctx | |
self.n_positions = n_positions | |
self.n_embd = n_embd | |
self.n_layer = n_layer | |
self.n_head = n_head | |
self.layer_norm_epsilon = layer_norm_epsilon | |
self.initializer_range = initializer_range | |
class GPT2LMHeadModel(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.transformer = GPT2Model(config) | |
self.lm_head = GPT2LMHead(self.transformer.wte.weight, config) | |
def forward(self, input_ids, position_ids=None, token_type_ids=None, past=None): | |
lm_logits, presents = self.transformer(input_ids, position_ids, token_type_ids, past) | |
return lm_logits, presents | |
class GPT2Model(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.n_layer = config.n_layer | |
self.n_embd = config.n_embd | |
self.n_vocab = config.vocab_size | |
self.wte = nn.Embedding(config.vocab_size, config.n_embd) | |
self.wpe = nn.Embedding(config.n_positions, config.n_embd) | |
block = Block(config.n_ctx, config, scale=True) | |
self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)]) | |
self.ln_f = LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) | |
def forward(self, input_ids, position_ids=None, token_type_ids=None, past=None): | |
if past is None: | |
past_length = 0 | |
past = [None] * len(self.h) | |
else: | |
past_length = past[0][0].size(-2) | |
if position_ids is None: | |
position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device) | |
position_ids = position_ids.unsqueeze(0).expand_as(input_ids) | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_ids.size(-1)) | |
position_ids = position_ids.view(-1, position_ids.size(-1)) | |
inputs_embeds = self.wte(input_ids) | |
position_embeds = self.wpe(position_ids) | |
if token_type_ids is not None: | |
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) | |
token_type_embeds = self.wte(token_type_ids) | |
else: | |
token_type_embeds = 0 | |
hidden_states = inputs_embeds + position_embeds + token_type_embeds | |
presents = [] | |
for block, layer_past in zip(self.h, past): | |
hidden_states, present = block(hidden_states, layer_past) | |
presents.append(present) | |
hidden_states = self.ln_f(hidden_states) | |
output_shape = input_shape + (hidden_states.size(-1),) | |
return hidden_states.view(*output_shape), presents | |
class GPT2LMHead(nn.Module): | |
def __init__(self, model_embeddings_weights, config): | |
super().__init__() | |
self.n_embd = config.n_embd | |
self.decoder = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
self.decoder.weight = model_embeddings_weights | |
def forward(self, hidden_state): | |
lm_logits = self.decoder(hidden_state) | |
return lm_logits | |
class Block(nn.Module): | |
def __init__(self, n_ctx, config, scale=False): | |
super().__init__() | |
nx = config.n_embd | |
self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon) | |
self.attn = Attention(nx, n_ctx, config, scale) | |
self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon) | |
self.mlp = MLP(4 * nx, config) | |
def forward(self, x, layer_past=None): | |
a, present = self.attn(self.ln_1(x), layer_past=layer_past) | |
x = x + a | |
m = self.mlp(self.ln_2(x)) | |
x = x + m | |
return x, present | |
class Attention(nn.Module): | |
def __init__(self, nx, n_ctx, config, scale=False): | |
super().__init__() | |
n_state = nx | |
assert n_state % config.n_head == 0 | |
self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx)) | |
self.n_head = config.n_head | |
self.split_size = n_state | |
self.scale = scale | |
self.c_attn = Conv1D(n_state * 3, nx) | |
self.c_proj = Conv1D(n_state, nx) | |
def _attn(self, q, k, v): | |
w = torch.matmul(q, k) | |
if self.scale: | |
w = w / math.sqrt(v.size(-1)) | |
nd, ns = w.size(-2), w.size(-1) | |
b = self.bias[:, :, ns - nd:ns, :ns] | |
w = w * b - 1e-10 * (1 - b) | |
w = nn.Softmax(dim=-1)(w) | |
return torch.matmul(w, v) | |
def merge_heads(self, x): | |
x = x.permute(0, 2, 1, 3).contiguous() | |
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),) | |
return x.view(*new_x_shape) | |
def split_heads(self, x, k=False): | |
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head) | |
x = x.view(*new_x_shape) | |
if k: | |
return x.permute(0, 2, 3, 1) | |
else: | |
return x.permute(0, 2, 1, 3) | |
def forward(self, x, layer_past=None): | |
x = self.c_attn(x) | |
query, key, value = x.split(self.split_size, dim=2) | |
query = self.split_heads(query) | |
key = self.split_heads(key, k=True) | |
value = self.split_heads(value) | |
if layer_past is not None: | |
past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1] | |
key = torch.cat((past_key, key), dim=-1) | |
value = torch.cat((past_value, value), dim=-2) | |
present = torch.stack((key.transpose(-2, -1), value)) | |
a = self._attn(query, key, value) | |
a = self.merge_heads(a) | |
a = self.c_proj(a) | |
return a, present | |
class MLP(nn.Module): | |
def __init__(self, n_state, config): | |
super().__init__() | |
nx = config.n_embd | |
self.c_fc = Conv1D(n_state, nx) | |
self.c_proj = Conv1D(nx, n_state) | |
self.act = gelu | |
def forward(self, x): | |
h = self.act(self.c_fc(x)) | |
h2 = self.c_proj(h) | |
return h2 | |
class Conv1D(nn.Module): | |
def __init__(self, nf, nx): | |
super().__init__() | |
self.nf = nf | |
w = torch.empty(nx, nf) | |
nn.init.normal_(w, std=0.02) | |
self.weight = Parameter(w) | |
self.bias = Parameter(torch.zeros(nf)) | |
def forward(self, x): | |
size_out = x.size()[:-1] + (self.nf,) | |
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight) | |
x = x.view(*size_out) | |
return x | |
class LayerNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-12): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.bias = nn.Parameter(torch.zeros(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, x): | |
u = x.mean(-1, keepdim=True) | |
s = (x - u).pow(2).mean(-1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.variance_epsilon) | |
return self.weight * x + self.bias | |
def gelu(x): | |
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) |