File size: 14,169 Bytes
f5790af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import torch
import torch.nn as nn
import wget
import json
import os
import sentencepiece as spm
import re

TRANSLATION_FOLDER = "./TranslationModel"
TRANSLATION_MODEL_WEIGHTS_FILE = "pytorch_model.bin"
TRANSLATION_MODEL_CONFIG_FILE = "config.json"
TRANSLATION_MODEL_VOCAB_FILE = "sentencepiece.bpe.model"
TRANSLATION_MODEL_WEIGHTS_URL = "https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt/resolve/main/pytorch_model.bin"
TRANSLATION_MODEL_CONFIG_URL = "https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt/resolve/main/config.json"
TRANSLATION_MODEL_VOCAB_URL = "https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt/resolve/main/sentencepiece.bpe.model"
TRANSLATION_MODEL_FILES_URLS = [
    (TRANSLATION_MODEL_WEIGHTS_URL, TRANSLATION_MODEL_WEIGHTS_FILE),
    (TRANSLATION_MODEL_CONFIG_URL, TRANSLATION_MODEL_CONFIG_FILE),
    (TRANSLATION_MODEL_VOCAB_URL, TRANSLATION_MODEL_VOCAB_FILE),
]
TRANSLATION_SPM_URL = "https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt/resolve/main/sentencepiece.bpe.model"
TRANSLATION_SPM = "sentencepiece.bpe.model"

def ensure_translation_files_exist():
    os.makedirs(TRANSLATION_FOLDER, exist_ok=True)
    for url, filename in TRANSLATION_MODEL_FILES_URLS:
        filepath = os.path.join(TRANSLATION_FOLDER, filename)
        if not os.path.exists(filepath):
            wget.download(url, out=filepath)
    filepath_spm = os.path.join(TRANSLATION_FOLDER, TRANSLATION_SPM)
    if not os.path.exists(filepath_spm):
        wget.download(TRANSLATION_SPM_URL, out=filepath_spm)

class MBartConfig:
    def __init__(self, vocab_size, hidden_size=1024, num_hidden_layers=12, num_attention_heads=16, intermediate_size=4096, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, layer_norm_eps=1e-05, initializer_range=0.02, pad_token_id=1, bos_token_id=0, eos_token_id=2, n_positions=1024, n_ctx=1024, decoder_layers=12, decoder_attention_heads=16, decoder_ffn_dim=4096, encoder_layers=12, encoder_attention_heads=16, encoder_ffn_dim=4096, **kwargs):
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.layer_norm_eps = layer_norm_eps
        self.initializer_range = initializer_range
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id
        self.eos_token_id = eos_token_id
        self.n_positions = n_positions
        self.n_ctx = n_ctx
        self.decoder_layers = decoder_layers
        self.decoder_attention_heads = decoder_attention_heads
        self.decoder_ffn_dim = decoder_ffn_dim
        self.encoder_layers = encoder_layers
        self.encoder_attention_heads = encoder_attention_heads
        self.encoder_ffn_dim = encoder_ffn_dim
        for key, value in kwargs.items():
            setattr(self, key, value)

    @classmethod
    def from_dict(cls, config_dict):
        return cls(**config_dict)

class MBartForConditionalGeneration(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.model = MBartModel(config)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)
        self.final_logits_bias = nn.Parameter(torch.zeros((1, config.vocab_size)))

    def forward(self, input_ids, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None):
        outputs = self.model(input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask)
        lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
        return lm_logits

class MBartModel(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.encoder = MBartEncoder(config)
        self.decoder = MBartDecoder(config)

    def forward(self, input_ids, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None):
        encoder_outputs = self.encoder(input_ids, attention_mask=attention_mask)
        decoder_outputs = self.decoder(decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask)
        return decoder_outputs

class MBartEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        self.embed_positions = MBartSinusoidalPositionalEmbedding(config.hidden_size, config.pad_token_id)
        self.layers = nn.ModuleList([MBartEncoderLayer(config) for _ in range(config.encoder_layers)])
        self.layernorm_embedding = nn.LayerNorm(config.hidden_size)

    def forward(self, input_ids, attention_mask=None):
        inputs_embeds = self.embed_tokens(input_ids)
        position_embeddings = self.embed_positions(input_ids)
        embeddings = inputs_embeds + position_embeddings
        embeddings = self.layernorm_embedding(embeddings)
        encoder_states = embeddings
        all_encoder_layers = []
        for layer_module in self.layers:
            encoder_states = layer_module(encoder_states, encoder_padding_mask=attention_mask)
            all_encoder_layers.append(encoder_states)
        return (encoder_states, all_encoder_layers)

class MBartDecoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        self.embed_positions = MBartSinusoidalPositionalEmbedding(config.hidden_size, config.pad_token_id)
        self.layers = nn.ModuleList([MBartDecoderLayer(config) for _ in range(config.decoder_layers)])
        self.layernorm_embedding = nn.LayerNorm(config.hidden_size)

    def forward(self, decoder_input_ids, encoder_outputs, decoder_attention_mask=None):
        inputs_embeds = self.embed_tokens(decoder_input_ids)
        position_embeddings = self.embed_positions(decoder_input_ids)
        embeddings = inputs_embeds + position_embeddings
        embeddings = self.layernorm_embedding(embeddings)
        decoder_states = embeddings
        all_decoder_layers = []
        all_cross_attention_layers = []
        for layer_module in self.layers:
            decoder_states, cross_attn_weights = layer_module(decoder_states, encoder_outputs[0], decoder_padding_mask=decoder_attention_mask, encoder_padding_mask=encoder_outputs[0])
            all_decoder_layers.append(decoder_states)
            all_cross_attention_layers.append(cross_attn_weights)
        return (decoder_states, all_decoder_layers, all_cross_attention_layers)

class MBartSinusoidalPositionalEmbedding(nn.Module):
    def __init__(self, embedding_dim, padding_idx):
        super().__init__()
        self.embedding_dim = embedding_dim
        self.padding_idx = padding_idx

    def forward(self, input_ids):
        seq_len = input_ids.size(1)
        positions = torch.arange(self.padding_idx + 1, seq_len + self.padding_idx + 1, dtype=torch.long, device=input_ids.device)
        return self.get_embedding(positions)

    def get_embedding(self, positions):
        half_dim = self.embedding_dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=torch.float, device=positions.device) * -emb)
        emb = torch.outer(positions.float(), emb)
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
        if self.embedding_dim % 2 == 1:
            emb = F.pad(emb, (0, 1, 0, 0))
        return emb

class MBartEncoderLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.self_attn = MBartAttention(config, embed_dim=config.hidden_size, num_heads=config.encoder_attention_heads)
        self.self_attn_layer_norm = nn.LayerNorm(config.hidden_size)
        self.fc1 = nn.Linear(config.hidden_size, config.encoder_ffn_dim)
        self.fc2 = nn.Linear(config.encoder_ffn_dim, config.hidden_size)
        self.final_layer_norm = nn.LayerNorm(config.hidden_size)

    def forward(self, hidden_states, encoder_padding_mask=None):
        residual = hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)
        hidden_states, _ = self.self_attn(hidden_states, hidden_states, hidden_states, attention_mask=encoder_padding_mask)
        hidden_states = residual + hidden_states
        residual = hidden_states
        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.fc2(F.relu(self.fc1(hidden_states)))
        hidden_states = residual + hidden_states
        return hidden_states

class MBartDecoderLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.self_attn = MBartAttention(config, embed_dim=config.hidden_size, num_heads=config.decoder_attention_heads)
        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
        self.self_attn_layer_norm = nn.LayerNorm(config.hidden_size)
        self.encoder_attn = MBartAttention(config, embed_dim=config.hidden_size, num_heads=config.decoder_attention_heads)
        self.encoder_attn_layer_norm = nn.LayerNorm(config.hidden_size)
        self.fc1 = nn.Linear(config.hidden_size, config.decoder_ffn_dim)
        self.fc2 = nn.Linear(config.decoder_ffn_dim, config.hidden_size)
        self.final_layer_norm = nn.LayerNorm(config.hidden_size)

    def forward(self, hidden_states, encoder_hidden_states, decoder_padding_mask=None, encoder_padding_mask=None):
        residual = hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)
        hidden_states, _ = self.self_attn(hidden_states, hidden_states, hidden_states, attention_mask=decoder_padding_mask)
        hidden_states = residual + hidden_states
        residual = hidden_states
        hidden_states = self.encoder_attn_layer_norm(hidden_states)
        hidden_states, cross_attn_weights = self.encoder_attn(hidden_states, encoder_hidden_states, encoder_hidden_states, attention_mask=encoder_padding_mask)
        hidden_states = residual + hidden_states
        residual = hidden_states
        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.fc2(F.relu(self.fc1(hidden_states)))
        hidden_states = residual + hidden_states
        return hidden_states, cross_attn_weights

class MBartAttention(nn.Module):
    def __init__(self, config, embed_dim, num_heads):
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.head_dim = embed_dim // num_heads
        self.scaling = self.head_dim ** -0.5
        self.k_proj = nn.Linear(embed_dim, embed_dim)
        self.v_proj = nn.Linear(embed_dim, embed_dim)
        self.q_proj = nn.Linear(embed_dim, embed_dim)
        self.out_proj = nn.Linear(embed_dim, embed_dim)
        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def _shape(self, tensor, seq_len, bsz):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(self, query, key, value, attention_mask=None):
        bsz, tgt_len, _ = query.size()
        bsz, src_len, _ = key.size()
        query = self.q_proj(query)
        key = self.k_proj(key)
        value = self.v_proj(value)
        query = self._shape(query, tgt_len, bsz)
        key = self._shape(key, src_len, bsz)
        value = self._shape(value, src_len, bsz)
        attn_weights = torch.matmul(query, key.transpose(-1, -2)) * self.scaling

        if attention_mask is not None:
            attention_mask = attention_mask.float().masked_fill(attention_mask == 0, float('-inf')).masked_fill(attention_mask == 1, float(0.0))
            attn_weights = attn_weights + attention_mask

        attn_weights = nn.Softmax(dim=-1)(attn_weights)
        attn_weights = self.dropout(attn_weights)
        attn_output = torch.matmul(attn_weights, value)
        attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, tgt_len, self.embed_dim)
        attn_output = self.out_proj(attn_output)
        return attn_output, attn_weights

class MBartTokenizer:
    def __init__(self, sentencepiece_processor):
        self.sp = sentencepiece_processor
        self.pad_token = "<pad>"
        self.bos_token = "<s>"
        self.eos_token = "</s>"
        self.pad_token_id = 1
        self.bos_token_id = 0
        self.eos_token_id = 2
        self.model_max_length = 1024

    def __call__(self, text, return_tensors="pt", padding=True, truncation=True, max_length=None, src_lang="en_XX", tgt_lang="es_XX", **kwargs):
        max_length = max_length if max_length is not None else self.model_max_length
        self.sp.SetEncodeExtraOptions("bos:<s>,eos:</s>")
        input_ids = self.sp.EncodeAsIds(f"{src_lang} {text}")
        if truncation and len(input_ids) > max_length:
            input_ids = input_ids[:max_length]
        if padding:
            input_ids += [self.pad_token_id] * (max_length - len(input_ids))
        if return_tensors == "pt":
            return {"input_ids": torch.tensor([input_ids]), "attention_mask": torch.ones(len(input_ids)).unsqueeze(0)}
        return input_ids

    def batch_decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True, target_lang="es_XX"):
        decoded_texts = []
        for ids in token_ids:
            text = self.sp.DecodeIds(list(ids))
            if skip_special_tokens:
                text = re.sub(r'(<s>|</s>|<pad>)', '', text).strip()
            if clean_up_tokenization_spaces:
                text = text.replace(' ', ' ').strip()
            decoded_texts.append(text.replace(f"{target_lang} ", ""))
        return decoded_texts