Spaces:
Runtime error
Runtime error
File size: 14,169 Bytes
f5790af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import torch
import torch.nn as nn
import wget
import json
import os
import sentencepiece as spm
import re
TRANSLATION_FOLDER = "./TranslationModel"
TRANSLATION_MODEL_WEIGHTS_FILE = "pytorch_model.bin"
TRANSLATION_MODEL_CONFIG_FILE = "config.json"
TRANSLATION_MODEL_VOCAB_FILE = "sentencepiece.bpe.model"
TRANSLATION_MODEL_WEIGHTS_URL = "https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt/resolve/main/pytorch_model.bin"
TRANSLATION_MODEL_CONFIG_URL = "https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt/resolve/main/config.json"
TRANSLATION_MODEL_VOCAB_URL = "https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt/resolve/main/sentencepiece.bpe.model"
TRANSLATION_MODEL_FILES_URLS = [
(TRANSLATION_MODEL_WEIGHTS_URL, TRANSLATION_MODEL_WEIGHTS_FILE),
(TRANSLATION_MODEL_CONFIG_URL, TRANSLATION_MODEL_CONFIG_FILE),
(TRANSLATION_MODEL_VOCAB_URL, TRANSLATION_MODEL_VOCAB_FILE),
]
TRANSLATION_SPM_URL = "https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt/resolve/main/sentencepiece.bpe.model"
TRANSLATION_SPM = "sentencepiece.bpe.model"
def ensure_translation_files_exist():
os.makedirs(TRANSLATION_FOLDER, exist_ok=True)
for url, filename in TRANSLATION_MODEL_FILES_URLS:
filepath = os.path.join(TRANSLATION_FOLDER, filename)
if not os.path.exists(filepath):
wget.download(url, out=filepath)
filepath_spm = os.path.join(TRANSLATION_FOLDER, TRANSLATION_SPM)
if not os.path.exists(filepath_spm):
wget.download(TRANSLATION_SPM_URL, out=filepath_spm)
class MBartConfig:
def __init__(self, vocab_size, hidden_size=1024, num_hidden_layers=12, num_attention_heads=16, intermediate_size=4096, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, layer_norm_eps=1e-05, initializer_range=0.02, pad_token_id=1, bos_token_id=0, eos_token_id=2, n_positions=1024, n_ctx=1024, decoder_layers=12, decoder_attention_heads=16, decoder_ffn_dim=4096, encoder_layers=12, encoder_attention_heads=16, encoder_ffn_dim=4096, **kwargs):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.layer_norm_eps = layer_norm_eps
self.initializer_range = initializer_range
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.n_positions = n_positions
self.n_ctx = n_ctx
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.encoder_ffn_dim = encoder_ffn_dim
for key, value in kwargs.items():
setattr(self, key, value)
@classmethod
def from_dict(cls, config_dict):
return cls(**config_dict)
class MBartForConditionalGeneration(nn.Module):
def __init__(self, config):
super().__init__()
self.model = MBartModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)
self.final_logits_bias = nn.Parameter(torch.zeros((1, config.vocab_size)))
def forward(self, input_ids, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None):
outputs = self.model(input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask)
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
return lm_logits
class MBartModel(nn.Module):
def __init__(self, config):
super().__init__()
self.encoder = MBartEncoder(config)
self.decoder = MBartDecoder(config)
def forward(self, input_ids, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None):
encoder_outputs = self.encoder(input_ids, attention_mask=attention_mask)
decoder_outputs = self.decoder(decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask)
return decoder_outputs
class MBartEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.embed_positions = MBartSinusoidalPositionalEmbedding(config.hidden_size, config.pad_token_id)
self.layers = nn.ModuleList([MBartEncoderLayer(config) for _ in range(config.encoder_layers)])
self.layernorm_embedding = nn.LayerNorm(config.hidden_size)
def forward(self, input_ids, attention_mask=None):
inputs_embeds = self.embed_tokens(input_ids)
position_embeddings = self.embed_positions(input_ids)
embeddings = inputs_embeds + position_embeddings
embeddings = self.layernorm_embedding(embeddings)
encoder_states = embeddings
all_encoder_layers = []
for layer_module in self.layers:
encoder_states = layer_module(encoder_states, encoder_padding_mask=attention_mask)
all_encoder_layers.append(encoder_states)
return (encoder_states, all_encoder_layers)
class MBartDecoder(nn.Module):
def __init__(self, config):
super().__init__()
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.embed_positions = MBartSinusoidalPositionalEmbedding(config.hidden_size, config.pad_token_id)
self.layers = nn.ModuleList([MBartDecoderLayer(config) for _ in range(config.decoder_layers)])
self.layernorm_embedding = nn.LayerNorm(config.hidden_size)
def forward(self, decoder_input_ids, encoder_outputs, decoder_attention_mask=None):
inputs_embeds = self.embed_tokens(decoder_input_ids)
position_embeddings = self.embed_positions(decoder_input_ids)
embeddings = inputs_embeds + position_embeddings
embeddings = self.layernorm_embedding(embeddings)
decoder_states = embeddings
all_decoder_layers = []
all_cross_attention_layers = []
for layer_module in self.layers:
decoder_states, cross_attn_weights = layer_module(decoder_states, encoder_outputs[0], decoder_padding_mask=decoder_attention_mask, encoder_padding_mask=encoder_outputs[0])
all_decoder_layers.append(decoder_states)
all_cross_attention_layers.append(cross_attn_weights)
return (decoder_states, all_decoder_layers, all_cross_attention_layers)
class MBartSinusoidalPositionalEmbedding(nn.Module):
def __init__(self, embedding_dim, padding_idx):
super().__init__()
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
def forward(self, input_ids):
seq_len = input_ids.size(1)
positions = torch.arange(self.padding_idx + 1, seq_len + self.padding_idx + 1, dtype=torch.long, device=input_ids.device)
return self.get_embedding(positions)
def get_embedding(self, positions):
half_dim = self.embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float, device=positions.device) * -emb)
emb = torch.outer(positions.float(), emb)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if self.embedding_dim % 2 == 1:
emb = F.pad(emb, (0, 1, 0, 0))
return emb
class MBartEncoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.self_attn = MBartAttention(config, embed_dim=config.hidden_size, num_heads=config.encoder_attention_heads)
self.self_attn_layer_norm = nn.LayerNorm(config.hidden_size)
self.fc1 = nn.Linear(config.hidden_size, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, config.hidden_size)
self.final_layer_norm = nn.LayerNorm(config.hidden_size)
def forward(self, hidden_states, encoder_padding_mask=None):
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, _ = self.self_attn(hidden_states, hidden_states, hidden_states, attention_mask=encoder_padding_mask)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.fc2(F.relu(self.fc1(hidden_states)))
hidden_states = residual + hidden_states
return hidden_states
class MBartDecoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.self_attn = MBartAttention(config, embed_dim=config.hidden_size, num_heads=config.decoder_attention_heads)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.self_attn_layer_norm = nn.LayerNorm(config.hidden_size)
self.encoder_attn = MBartAttention(config, embed_dim=config.hidden_size, num_heads=config.decoder_attention_heads)
self.encoder_attn_layer_norm = nn.LayerNorm(config.hidden_size)
self.fc1 = nn.Linear(config.hidden_size, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, config.hidden_size)
self.final_layer_norm = nn.LayerNorm(config.hidden_size)
def forward(self, hidden_states, encoder_hidden_states, decoder_padding_mask=None, encoder_padding_mask=None):
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, _ = self.self_attn(hidden_states, hidden_states, hidden_states, attention_mask=decoder_padding_mask)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
hidden_states, cross_attn_weights = self.encoder_attn(hidden_states, encoder_hidden_states, encoder_hidden_states, attention_mask=encoder_padding_mask)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.fc2(F.relu(self.fc1(hidden_states)))
hidden_states = residual + hidden_states
return hidden_states, cross_attn_weights
class MBartAttention(nn.Module):
def __init__(self, config, embed_dim, num_heads):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.scaling = self.head_dim ** -0.5
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.out_proj = nn.Linear(embed_dim, embed_dim)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def _shape(self, tensor, seq_len, bsz):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(self, query, key, value, attention_mask=None):
bsz, tgt_len, _ = query.size()
bsz, src_len, _ = key.size()
query = self.q_proj(query)
key = self.k_proj(key)
value = self.v_proj(value)
query = self._shape(query, tgt_len, bsz)
key = self._shape(key, src_len, bsz)
value = self._shape(value, src_len, bsz)
attn_weights = torch.matmul(query, key.transpose(-1, -2)) * self.scaling
if attention_mask is not None:
attention_mask = attention_mask.float().masked_fill(attention_mask == 0, float('-inf')).masked_fill(attention_mask == 1, float(0.0))
attn_weights = attn_weights + attention_mask
attn_weights = nn.Softmax(dim=-1)(attn_weights)
attn_weights = self.dropout(attn_weights)
attn_output = torch.matmul(attn_weights, value)
attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
class MBartTokenizer:
def __init__(self, sentencepiece_processor):
self.sp = sentencepiece_processor
self.pad_token = "<pad>"
self.bos_token = "<s>"
self.eos_token = "</s>"
self.pad_token_id = 1
self.bos_token_id = 0
self.eos_token_id = 2
self.model_max_length = 1024
def __call__(self, text, return_tensors="pt", padding=True, truncation=True, max_length=None, src_lang="en_XX", tgt_lang="es_XX", **kwargs):
max_length = max_length if max_length is not None else self.model_max_length
self.sp.SetEncodeExtraOptions("bos:<s>,eos:</s>")
input_ids = self.sp.EncodeAsIds(f"{src_lang} {text}")
if truncation and len(input_ids) > max_length:
input_ids = input_ids[:max_length]
if padding:
input_ids += [self.pad_token_id] * (max_length - len(input_ids))
if return_tensors == "pt":
return {"input_ids": torch.tensor([input_ids]), "attention_mask": torch.ones(len(input_ids)).unsqueeze(0)}
return input_ids
def batch_decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True, target_lang="es_XX"):
decoded_texts = []
for ids in token_ids:
text = self.sp.DecodeIds(list(ids))
if skip_special_tokens:
text = re.sub(r'(<s>|</s>|<pad>)', '', text).strip()
if clean_up_tokenization_spaces:
text = text.replace(' ', ' ').strip()
decoded_texts.append(text.replace(f"{target_lang} ", ""))
return decoded_texts |