Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,262 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
"""
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers import TextToVideoSDPipeline, DiffusionPipeline
|
3 |
+
from diffusers.utils import export_to_video
|
4 |
import gradio as gr
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
+
import PIL
|
7 |
+
from io import BytesIO
|
8 |
+
from gtts import gTTS
|
9 |
+
import time
|
10 |
+
from pydub import AudioSegment
|
11 |
+
import nltk
|
12 |
+
from together import Together
|
13 |
+
import base64
|
14 |
+
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained("ParisNeo/LLama-3.2-3B-Lollms-Finetuned-GGUF")
|
16 |
+
model0 = AutoModelForCausalLM.from_pretrained("ParisNeo/LLama-3.2-3B-Lollms-Finetuned-GGUF", ignore_mismatched_sizes=True)
|
17 |
+
|
18 |
+
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
|
19 |
+
model0 = model0.to(device)
|
20 |
+
|
21 |
+
# Initialize Chat History
|
22 |
+
def chat_with_llama(user_input, chat_history):
|
23 |
+
# Prepare formatted prompt
|
24 |
+
prompt = "You are a helpful, respectful and honest general-purpose assistant."
|
25 |
+
for user_content, assist_content in chat_history:
|
26 |
+
prompt += f"user: {user_content}\n"
|
27 |
+
prompt += f"assistant: {assist_content}\n"
|
28 |
+
prompt += f"user: {user_input}\n'assistant:"
|
29 |
+
|
30 |
+
# Tokenize and generate response
|
31 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda:1")
|
32 |
+
output = model0.generate(inputs["input_ids"], max_length=4096, max_new_tokens = 1024, temperature=0.7, max_time = 10.0, repetition_penalty = 1.0)
|
33 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
34 |
+
|
35 |
+
# Extract and append assistant's response
|
36 |
+
assistant_reply = response.split("assistant:")[-1].split('user:')[0].strip()
|
37 |
+
chat_history.append((user_input, assistant_reply))
|
38 |
+
|
39 |
+
return assistant_reply, chat_history
|
40 |
+
|
41 |
+
api_key='YOUR API KEY HERE'
|
42 |
+
client = Together(api_key=api_key)
|
43 |
+
|
44 |
+
def chat_api(user_input, chat_history):
|
45 |
+
messages = []
|
46 |
+
for user_content, assist_content in chat_history:
|
47 |
+
messages += [
|
48 |
+
{"role":"user", "content":user_content},
|
49 |
+
{"role":"assistant", "content":assist_content}
|
50 |
+
]
|
51 |
+
messages += [{"role":"user", "content":user_input}]
|
52 |
+
|
53 |
+
response = client.chat.completions.create(
|
54 |
+
model="meta-llama/Llama-3.3-70B-Instruct-Turbo",
|
55 |
+
messages=messages,
|
56 |
+
)
|
57 |
+
reply = response.choices[0].message.content
|
58 |
+
chat_history.append((user_input, reply))
|
59 |
+
return reply, chat_history
|
60 |
+
|
61 |
+
def tti_api(prompt, num_steps = 25, width = 512, heights = 512):
|
62 |
+
response = client.images.generate(
|
63 |
+
prompt=prompt,
|
64 |
+
model="black-forest-labs/FLUX.1-dev",
|
65 |
+
width=width,
|
66 |
+
height=heights,
|
67 |
+
steps=num_steps,
|
68 |
+
n=1,
|
69 |
+
response_format="b64_json"
|
70 |
+
)
|
71 |
+
|
72 |
+
image_data = base64.b64decode(response.data[0].b64_json)
|
73 |
+
return image_data
|
74 |
+
|
75 |
+
prompt = 'A nice black lexus 570 car running on the snowy road.'
|
76 |
+
image = tti_api(prompt, num_steps = 25)
|
77 |
+
image = PIL.Image.open(BytesIO(image))
|
78 |
+
image.save('result.png')
|
79 |
+
image.show()
|
80 |
+
|
81 |
+
def ttv(prompt, num_steps = 50):
|
82 |
+
# Load the text-to-video model from Hugging Face
|
83 |
+
model_id = "damo-vilab/text-to-video-ms-1.7b" # ModelScope Text-to-Video model
|
84 |
+
#model_id = "guoyww/animatediff-motion-adapter-v1-5-2" # ModelScope Text-to-Video
|
85 |
+
|
86 |
+
pipe = TextToVideoSDPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16")
|
87 |
+
pipe.to("cuda:0") # Use GPU if available
|
88 |
+
|
89 |
+
# Generate video frames
|
90 |
+
print("Generating video... This may take some time.")
|
91 |
+
with torch.no_grad():
|
92 |
+
video_frames = pipe(prompt, num_frames=32, height=256, width=256, num_inference_steps=num_steps).frames[0]
|
93 |
+
# Save the generated video
|
94 |
+
video_path = export_to_video(video_frames, output_video_path="output_video.mp4")
|
95 |
+
return video_path
|
96 |
+
test_video = ttv('An awesome lexus 570 car running on the snowy road, high quality', num_steps = 50)
|
97 |
+
|
98 |
+
# Ensure the sentence tokenizer is downloaded (if not already)
|
99 |
+
nltk.download('punkt')
|
100 |
+
|
101 |
+
# Function to convert text to speech and generate SRT content
|
102 |
+
def tts(text):
|
103 |
+
# Initialize the Google TTS engine with language (e.g., 'en' for English)
|
104 |
+
tts = gTTS(text=text, lang='en', slow=False)
|
105 |
+
|
106 |
+
# Save to an audio file
|
107 |
+
audio_path = "output.mp3"
|
108 |
+
tts.save(audio_path)
|
109 |
+
|
110 |
+
# Load the audio file with pydub to get the duration
|
111 |
+
audio = AudioSegment.from_mp3(audio_path)
|
112 |
+
duration_ms = len(audio) # Duration in milliseconds
|
113 |
+
|
114 |
+
# Split the text into sentences using NLTK
|
115 |
+
sentences = nltk.sent_tokenize(text)
|
116 |
+
|
117 |
+
# Estimate the duration per sentence
|
118 |
+
chunk_duration_ms = duration_ms // len(sentences) # Estimated duration per sentence
|
119 |
+
|
120 |
+
# Generate SRT content
|
121 |
+
srt_content = ""
|
122 |
+
start_time = 0 # Start time of the first subtitle
|
123 |
+
for idx, sentence in enumerate(sentences):
|
124 |
+
end_time = start_time + chunk_duration_ms
|
125 |
+
start_time_formatted = time.strftime('%H:%M:%S', time.gmtime(start_time / 1000)) + ',' + f'{start_time % 1000:03d}'
|
126 |
+
end_time_formatted = time.strftime('%H:%M:%S', time.gmtime(end_time / 1000)) + ',' + f'{end_time % 1000:03d}'
|
127 |
+
|
128 |
+
srt_content += f"{idx + 1}\n"
|
129 |
+
srt_content += f"{start_time_formatted} --> {end_time_formatted}\n"
|
130 |
+
srt_content += f"{sentence}\n\n"
|
131 |
+
|
132 |
+
start_time = end_time # Update start time for the next sentence
|
133 |
+
|
134 |
+
return audio_path, srt_content
|
135 |
+
|
136 |
+
def tti(prompt, num_steps = 50, width = 512, heights = 512):
|
137 |
+
# Load the pre-trained Stable Diffusion pipeline from Hugging Face
|
138 |
+
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1")
|
139 |
+
#pipe.load_lora_weights("FradigmaDangerYT/dalle-e-mini")
|
140 |
+
|
141 |
+
# Move the pipeline to GPU (you can select the GPU with cuda:1 for the second GPU)
|
142 |
+
device0 = torch.device("cuda:0") # Use "cuda:0" for the first GPU, "cuda:1" for the second GPU
|
143 |
+
pipe.to(device0)
|
144 |
+
print(heights)
|
145 |
+
# Generate an image
|
146 |
+
image = pipe(prompt, num_inference_steps = num_steps, width = width, height = heights).images[0] # Generate image from the prompt
|
147 |
+
return image
|
148 |
+
|
149 |
+
prompt = 'A nice black lexus 570 car running on the snowy road.'
|
150 |
+
image = tti(prompt, num_steps = 25, width = 320, heights = 240)
|
151 |
+
# image = PIL.Image.open(BytesIO(image))
|
152 |
+
image.save('result.png')
|
153 |
+
image.show()
|
154 |
+
|
155 |
+
|
156 |
+
# If demo is on, turn off demo
|
157 |
+
try:
|
158 |
+
demo.close()
|
159 |
+
except:
|
160 |
+
pass
|
161 |
+
|
162 |
+
with gr.Blocks() as demo:
|
163 |
+
gr.Markdown("""
|
164 |
+
# Gradio based Text-to-Any Project
|
165 |
+
""")
|
166 |
+
with gr.Tab(label="Llama-Chat"):
|
167 |
+
radios0 = gr.Radio(['use api', 'use loaded model'], value="use api", show_label = False)
|
168 |
+
gptDialog = gr.Chatbot(label = "Llama-Chat", max_height=512, min_height=512,
|
169 |
+
autoscroll= True)
|
170 |
+
with gr.Row(equal_height=True):
|
171 |
+
prompt0 = gr.Textbox(label = 'Prompt Input', lines = 1, scale = 9, max_lines=2,
|
172 |
+
autofocus=True, autoscroll=True, placeholder='Type your message here...')
|
173 |
+
with gr.Column(scale = 1):
|
174 |
+
generate_btn0 = gr.Button('generate')
|
175 |
+
clear_btn0 = gr.Button('clear')
|
176 |
+
|
177 |
+
with gr.Tab(label="Text-to-Image/Video"):
|
178 |
+
with gr.Row():
|
179 |
+
radios1 = gr.Radio(['use api', 'use loaded model'], value="use api", show_label = False)
|
180 |
+
steps = gr.Slider(value = 50, minimum = 20, maximum = 100, step = 1, label = 'num_steps')
|
181 |
+
width = gr.Slider(value = 1024, minimum = 240, maximum = 1792, step = 16, label = 'width')
|
182 |
+
heights = gr.Slider(value = 512, minimum = 160, maximum = 1792, step = 16, label = 'heights')
|
183 |
+
|
184 |
+
with gr.Row():
|
185 |
+
outputImg = gr.Image(type='pil',height= 512, width=512, label="Output Image", interactive=False)
|
186 |
+
outputVideo = gr.Video(width=512, height=512, label = "Output Video", interactive=False)
|
187 |
+
with gr.Row(equal_height=True):
|
188 |
+
prompt1 = gr.Textbox(label = 'Prompt Input', lines = 1, scale = 9, max_lines=2,
|
189 |
+
autofocus=True, autoscroll=True, placeholder='Type your message here...')
|
190 |
+
with gr.Column(scale = 1):
|
191 |
+
generate_btn1 = gr.Button('generate image')
|
192 |
+
generate_btn11 = gr.Button('generate video')
|
193 |
+
|
194 |
+
with gr.Tab(label = "Text-to-Speech"):
|
195 |
+
outputAudio = gr.Audio(label="Audio Output", interactive = False)
|
196 |
+
outputSrt = gr.Textbox(label = 'Script Output', lines = 10, max_lines = 5, placeholder = 'Script output here')
|
197 |
+
with gr.Row(equal_height=False):
|
198 |
+
prompt2 = gr.Textbox(label = 'Prompt Input', lines = 5, scale = 9, max_lines=5,
|
199 |
+
autofocus=True, autoscroll=True, placeholder='Type your message here...')
|
200 |
+
with gr.Column(scale = 1):
|
201 |
+
generate_btn2 = gr.Button('generate')
|
202 |
+
clear_btn2 = gr.Button('clear')
|
203 |
+
|
204 |
+
with gr.Tab(label = 'About'):
|
205 |
+
pass
|
206 |
+
|
207 |
+
def generate_txt(prompt, check, history):
|
208 |
+
if check == 'use api':
|
209 |
+
response, history = chat_api(prompt, history)
|
210 |
+
if response == None:
|
211 |
+
gr.Warning('Can not reach api.')
|
212 |
+
else:
|
213 |
+
response, history = chat_with_llama(prompt, history)
|
214 |
+
if response == None:
|
215 |
+
gr.Warning('Failed to load model.')
|
216 |
+
return '', history
|
217 |
+
|
218 |
+
def clear_chat():
|
219 |
+
history = []
|
220 |
+
gr.Info('Cleaned successfully!')
|
221 |
+
return history
|
222 |
+
|
223 |
+
def generate_img(prompt, check, num_steps, width, heights):
|
224 |
+
if check == 'use api':
|
225 |
+
image = tti_api(prompt, num_steps = num_steps, width = width, heights = heights)
|
226 |
+
image = PIL.Image.open(BytesIO(image))
|
227 |
+
if not image:
|
228 |
+
gr.Warning('Can not reach api')
|
229 |
+
gr.Info('Generated Image Successfully!')
|
230 |
+
else:
|
231 |
+
image = tti(prompt, num_steps = num_steps, width = width, heights = heights)
|
232 |
+
gr.Info('Generated Image Successfully!')
|
233 |
+
return image
|
234 |
+
|
235 |
+
def generate_video(prompt, num_steps):
|
236 |
+
video = ttv(prompt, num_steps)
|
237 |
+
gr.Info('Generated Video Successfully!')
|
238 |
+
return video
|
239 |
+
|
240 |
+
def generate_speech(prompt):
|
241 |
+
audio, script = tts(prompt)
|
242 |
+
gr.Info('Generated Speech Successfully!')
|
243 |
+
return audio, script
|
244 |
+
|
245 |
+
def clear_speech():
|
246 |
+
gr.Info('Cleaned Successfully!')
|
247 |
+
return None, ''
|
248 |
+
|
249 |
+
prompt0.submit(generate_txt, [prompt0, radios0, gptDialog], [prompt0, gptDialog])
|
250 |
+
prompt1.submit(generate_img, [prompt1, radios1], [outputImg])
|
251 |
+
|
252 |
+
# generate button click event
|
253 |
+
generate_btn0.click(generate_txt, [prompt0, radios0, gptDialog], [prompt0, gptDialog])
|
254 |
+
generate_btn1.click(generate_img, [prompt1, radios1, steps, width, heights], [outputImg])
|
255 |
+
generate_btn11.click(generate_video, [prompt1, steps], [outputVideo])
|
256 |
+
generate_btn2.click(generate_speech, [prompt2], [outputAudio, outputSrt])
|
257 |
+
|
258 |
+
# clear button click event
|
259 |
+
clear_btn0.click(clear_chat, [], [gptDialog])
|
260 |
+
clear_btn2.click(clear_speech, [], [outputAudio, outputSrt])
|
261 |
+
demo.launch(share = True)
|
262 |
+
|