import os import streamlit as st from datasets import load_dataset import chromadb import string from openai import OpenAI import numpy as np import pandas as pd from scipy.spatial.distance import cosine from typing import Dict, List def merge_dataframes(dataframes): # Concatenate the list of dataframes combined_dataframe = pd.concat(dataframes, ignore_index=True) # Ensure that the resulting dataframe only contains the columns "context", "questions", "answers" combined_dataframe = combined_dataframe[['context', 'questions', 'answers']] return combined_dataframe def call_chatgpt(prompt: str, directions: str) -> str: ''' Uses the OpenAI API to generate an AI response to a prompt. Args: prompt: A string representing the prompt to send to the OpenAI API. Returns: A string representing the AI's generated response. ''' # Use the OpenAI API to generate a response based on the input prompt. client = OpenAI(api_key = os.environ["OPENAI_API_KEY"]) completion = client.chat.completions.create( model="gpt-3.5-turbo-0125", messages=[ {"role": "system", "content": directions}, {"role": "user", "content": prompt} ] ) # Extract the text from the first (and only) choice in the response output. ans = completion.choices[0].message.content # Return the generated AI response. return ans def openai_text_embedding(prompt: str) -> str: return openai.Embedding.create(input=prompt, model="text-embedding-ada-002")[ "data" ][0]["embedding"] def calculate_sts_openai_score(sentence1: str, sentence2: str) -> float: # Compute sentence embeddings embedding1 = openai_text_embedding(sentence1) # Flatten the embedding array embedding2 = openai_text_embedding(sentence2) # Flatten the embedding array # Convert to array embedding1 = np.asarray(embedding1) embedding2 = np.asarray(embedding2) # Calculate cosine similarity between the embeddings similarity_score = 1 - cosine(embedding1, embedding2) return similarity_score def add_dist_score_column( dataframe: pd.DataFrame, sentence: str, ) -> pd.DataFrame: dataframe["stsopenai"] = dataframe["questions"].apply( lambda x: calculate_sts_openai_score(str(x), sentence) ) sorted_dataframe = dataframe.sort_values(by="stsopenai", ascending=False) return sorted_dataframe.iloc[:5, :] def convert_to_list_of_dict(df: pd.DataFrame) -> List[Dict[str, str]]: ''' Reads in a pandas DataFrame and produces a list of dictionaries with two keys each, 'question' and 'answer.' Args: df: A pandas DataFrame with columns named 'questions' and 'answers'. Returns: A list of dictionaries, with each dictionary containing a 'question' and 'answer' key-value pair. ''' # Initialize an empty list to store the dictionaries result = [] # Loop through each row of the DataFrame for index, row in df.iterrows(): # Create a dictionary with the current question and answer qa_dict_quest = {"role": "user", "content": row["questions"]} qa_dict_ans = {"role": "assistant", "content": row["answers"]} # Add the dictionary to the result list result.append(qa_dict_quest) result.append(qa_dict_ans) # Return the list of dictionaries return result domain_info = [{'link': 'KeshavRa/About_YSA_Database', 'name': 'About YSA'}] st.sidebar.markdown('''This is a chatbot to help you learn more about YSA''') domain = st.sidebar.selectbox("Select a topic", [d["name"] for d in domain_info]) special_threshold = 0.3 n_results = 3 clear_button = st.sidebar.button("Clear Conversation", key="clear") if clear_button: st.session_state.messages = [] st.session_state.curr_domain = "" for d in domain_info: if domain == d['name']: dataset = load_dataset(d['link']) initial_input = "Tell me about YSA" # Initialize a new client for ChromeDB. client = chromadb.Client() # Generate a random number between 1 billion and 10 billion. random_number: int = np.random.randint(low=1e9, high=1e10) # Generate a random string consisting of 10 uppercase letters and digits. random_string: str = "".join( np.random.choice(list(string.ascii_uppercase + string.digits), size=10) ) # Combine the random number and random string into one identifier. combined_string: str = f"{random_number}{random_string}" # Create a new collection in ChromeDB with the combined string as its name. collection = client.create_collection(combined_string) st.title("YSA Chatbot") # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] if "curr_domain" not in st.session_state: st.session_state.curr_domain = "" # Embed and store the first N supports for this demo with st.spinner("Loading, please be patient with us ... 🙏"): L = len(dataset["train"]["questions"]) collection.add( ids=[str(i) for i in range(0, L)], # IDs are just strings documents=dataset["train"]["questions"], # Enter questions here metadatas=[{"type": "support"} for _ in range(0, L)], ) if st.session_state.curr_domain != domain: st.session_state.messages = [] st.session_state.curr_domain = domain # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # React to user input if prompt := st.chat_input("Tell me about a"): # Display user message in chat message container st.chat_message("user").markdown(prompt) # Add user message to chat history st.session_state.messages.append({"role": "user", "content": prompt}) question = prompt results = collection.query(query_texts=question, n_results=n_results) idx = results["ids"][0] idx = [int(i) for i in idx] ref = pd.DataFrame( { "idx": idx, "questions": [dataset["train"]["questions"][i] for i in idx], "answers": [dataset["train"]["answers"][i] for i in idx], "distances": results["distances"][0], } ) # special_threshold = st.sidebar.slider('How old are you?', 0, 0.6, 0.1) # 0.3 # special_threshold = 0.3 filtered_ref = ref[ref["distances"] < special_threshold] if filtered_ref.shape[0] > 0: # st.success("There are highly relevant information in our database.") ref_from_db_search = filtered_ref["answers"].str.cat(sep=" ") final_ref = filtered_ref else: # st.warning( # "The database may not have relevant information to help your question so please be aware of hallucinations." # ) ref_from_db_search = ref["answers"].str.cat(sep=" ") final_ref = ref engineered_prompt = f''' Based on the context: {ref_from_db_search}, answer the user question: {question}. ''' answer = call_chatgpt(engineered_prompt, "You are a helpful assistant.") response = answer # Display assistant response in chat message container with st.chat_message("assistant"): st.markdown(response) with st.expander("See reference:"): st.table(final_ref) # Add assistant response to chat history st.session_state.messages.append({"role": "assistant", "content": response})