File size: 9,363 Bytes
7f53bc2
 
4c8b4d5
1f2416b
fc8894f
346db32
f303655
1f2416b
ddfb219
f91d245
0cffa94
7aa3d69
 
 
 
 
 
 
d0c9a6e
7aa3d69
 
0cffa94
7aa3d69
 
 
 
 
 
 
 
 
dd2c1ff
7aa3d69
 
 
3f8e536
7aa3d69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f008966
7aa3d69
 
 
b5edb7c
7aa3d69
 
 
b5edb7c
7aa3d69
 
 
1f70408
7aa3d69
 
 
 
 
1f70408
7aa3d69
 
 
b5edb7c
7aa3d69
 
 
 
 
 
 
 
b5edb7c
607a134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fedc81
bfbcf7a
 
 
 
 
 
5fedc81
f008966
bfbcf7a
b5edb7c
 
 
 
 
 
3f8e536
f838ca7
b5edb7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0df756
b5edb7c
5fedc81
b5edb7c
5fedc81
 
b5edb7c
5fedc81
 
b5edb7c
5fedc81
 
 
b5edb7c
5fedc81
 
 
ad12a02
00ce247
 
 
5fedc81
 
 
6c6ae46
5fedc81
 
ad12a02
5fedc81
 
 
6c6ae46
5fedc81
 
00ce247
ad12a02
5fedc81
 
 
00ce247
1f63ae9
5fedc81
 
 
00ce247
1f63ae9
5fedc81
ddfb219
 
 
 
5fedc81
62d34d5
5fedc81
00ce247
e913fba
f5896e7
b71c7ab
 
da84afb
00ce247
b71c7ab
 
 
698c8f7
5fedc81
 
 
 
 
 
 
 
 
b5edb7c
5fedc81
 
b5edb7c
5fedc81
 
 
 
 
 
67a935e
5fedc81
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import streamlit as st
import json
import pandas as pd
import requests
import os
import math
from openai import OpenAI

def call_gpt(user_needs, shelter_services, api_key):
    client = OpenAI(api_key = api_key)

    completion = client.chat.completions.create(
        model="gpt-4o-mini",
        messages=[
            {"role": "system", "content": "Given two variables 'user needs' (the ideal qualities/services of a shelter) and 'shelter services' (the services offered by a shelter), return an integer 0-10 that scores how well the 'shelter services' match the 'user needs' where 0 is the best fit and 10 is the worst fit. IMPORTANT: NO MATTER WHAT, ONLY RETURN THE INTEGER (NO EXTRA WORDS, PUNCTUATION, ETC.)"},
            {"role": "user", "content": f"user_needs: {user_needs}, shelter_services: {shelter_services}"}
        ]
    )

    score = completion.choices[0].message.content.strip()
    return int(score)

def get_urgency_score(user, shelter):
    if user == "Today": 
        if shelter == "Immidiate": return 0
        if shelter == "High": return 0.75
        if shelter == "Moderate": return 1
    elif user == "In the next few days":
        if shelter == "Immidiate": return 0.25
        if shelter == "High": return 0
        if shelter == "Moderate": return 0.75
    elif user == "In a week or more":
        if shelter == "Immidiate": return 0.75
        if shelter == "High": return 0.25
        if shelter == "Moderate": return 0

def get_duration_score(user, shelter):
    if user == "Overnight":
        if shelter == "Overnight": return 0
        if shelter == "Temporary": return 0.5
        if shelter == "Transitional": return 0.75
        if shelter == "Long-Term": return 1
    elif user == "A month or less":
        if shelter == "Overnight": return 0.5
        if shelter == "Temporary": return 0
        if shelter == "Transitional": return 0.25
        if shelter == "Long-Term": return 0.75
    elif user == "A couple of months":
        if shelter == "Overnight": return 0.75
        if shelter == "Temporary": return 0.25
        if shelter == "Transitional": return 0
        if shelter == "Long-Term": return 0.5
    elif user == "A year or more":
        if shelter == "Overnight": return 1
        if shelter == "Temporary": return 0.75
        if shelter == "Transitional": return 0.5
        if shelter == "Long-Term": return 0
    
def get_coordinates(zipcode: str, api_key: str) -> list:
    """
    Get the coordinates (latitude and longitude) of an address using the OpenWeather Geocoding API.

    Parameters:
    zipcode (str): The zipcode to geocode.
    api_key (str): Your OpenWeather API key.

    Returns:
    list: A list containing the latitude and longitude of the address.
    """

    base_url = "http://api.openweathermap.org/geo/1.0/zip"
    params = {
        'zip': str(zipcode) + ",US",
        'appid': api_key
    }

    response = requests.get(base_url, params=params)
    data = response.json()
    return [data.get('lat'), data.get('lon')]

def haversine(lat1, lon1, lat2, lon2):
    R = 6371  # Earth radius in kilometers. Use 3956 for miles.
    dlat = math.radians(lat2 - lat1)
    dlon = math.radians(lon2 - lon1)
    a = math.sin(dlat / 2) ** 2 + math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) * math.sin(dlon / 2) ** 2
    c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
    distance = R * c
    return distance

# Initialize session state
if 'form_submitted' not in st.session_state:
    st.session_state.form_submitted = False

if 'shelter_index' not in st.session_state:
    st.session_state.shelter_index = 0

# Page config
st.set_page_config(
    page_title="ShelterSearch",
    layout="wide",
)

st.title("ShelterSearch")

if not st.session_state.form_submitted:
    st.write("Fill out this form")

    zipcodes = {
        'San Francisco': ['94101', '94102', '94103', '94104', '94105', '94107', '94108', '94109', '94110', '94111', '94112', '94114', '94115', '94116', '94117', '94118', '94119', '94120', '94121', '94122', '94123', '94124', '94125', '94126', '94127', '94128', '94129', '94130', '94131', '94132', '94133', '94134', '94140', '94141', '94142', '94146', '94147', '94157', '94159', '94164', '94165', '94166', '94167', '94168', '94169', '94170', '94172', '94188'],
        'Oakland': ['94601', '94602', '94603', '94604', '94605', '94606', '94607', '94608', '94609', '94610', '94611', '94612', '94613', '94614', '94615', '94617', '94618', '94619', '94620', '94621', '94623', '94624', '94661', '94662'],
        'Berkeley': ['94701', '94702', '94703', '94704', '94705', '94706', '94707', '94708', '94709', '94710', '94712']
    }
    
    city = st.selectbox("City", ['San Francisco', 'Oakland', 'Berkeley'])
    zipcode = st.selectbox("Zipcode", zipcodes[city])
        
    sex = st.radio("Sex", ["Male", "Female", "Other"])
    lgbtq = st.radio("Do you identify as LGBTQ+ (some shelters serve this community specifically)", ["No", "Yes"])
    domestic_violence = st.radio("Have you experienced domestic violence (some shelters serve these individuals specifically", ["No", "Yes"])
    
    urgency = st.radio("How quickly do you need help?", ("Today", "In the next few days", "In a week or more"))
    duration = st.radio("How long do you need a place to stay?", ("Overnight", "A month or less", "A couple of months", "A year or more"))
    needs = st.text_area("Optional - Needs (tell us what you need and how we can help)")

    if st.button("Submit"):
        data = {
            "City": city,
            "Zip Code": zipcode,
            "Sex": sex,
            "LGBTQ": lgbtq,
            "Domestic Violence": domestic_violence,
            "Urgency": urgency,
            "Duration": duration,
            "Needs": needs
        }

        with open('data.json', 'w') as f:
            json.dump(data, f)

        st.session_state.form_submitted = True
        st.session_state.data = data
        st.rerun()
else:
    with open('data.json', 'r') as f:
        data = json.load(f)
    st.json(data)

    shelters = pd.read_csv("database.csv")

    # filter city
    shelters = shelters[(shelters['City'] == data['City'])]
    
    # filter sex
    shelters = shelters[(shelters['Sex'] == data['Sex']) | (shelters['Sex'] == 'All')]

    # filter lgbtq
    if data['LGBTQ'] == 'No':
        shelters = shelters[(shelters['LGBTQ'] == "No")]

    # filter domestic violence
    if data['Domestic Violence'] == "No":
        shelters = shelters[(shelters['Domestic Violence'] == "No")]

    # keep track of which scores are calculated
    scores = []
    
    # calculate distances between zipcodes
    if data['Zip Code'] != "Unsure":
        geocoding_api_key = os.environ['OpenWeather_API_KEY']
        
        shelters_coordinates = shelters.apply(lambda row: get_coordinates(row['Zip Code'], geocoding_api_key), axis=1).tolist()
        user_coordinates = get_coordinates(data['Zip Code'], geocoding_api_key)
    
        distances = []
        for coordinates in shelters_coordinates:
             distances.append(haversine(coordinates[0], coordinates[1], user_coordinates[0], user_coordinates[1]))
    
        max = max(distances) if (max(distances) != 0) else 1
        shelters['zipcode_score'] = [d / max for d in distances]
        scores.append('zipcode_score')

    # get urgency scores 
    urgency_scores = shelters.apply(lambda row: get_urgency_score(data['Urgency'], row['Urgency']), axis=1).tolist()
    shelters['urgency_score'] = urgency_scores
    scores.append('urgency_score')

    # get duration scores
    duration_scores = shelters.apply(lambda row: get_duration_score(data['Duration'], row['Duration']), axis=1).tolist()
    shelters['duration_score'] = duration_scores
    scores.append('duration_score')

    # services
    if data['Needs'] != "":     
        OpenAI_API_KEY = os.environ["OPENAI_API_KEY"]
        
        services_scores = shelters.apply(lambda row: call_gpt(data['Needs'], row['Services'], OpenAI_API_KEY), axis=1).tolist()
        services_scores = [s / 10 for s in services_scores]
        
        shelters['services_score'] = services_scores
        scores.append('services_score')

    # calcualte cumulative score
    shelters['total_score'] = shelters[scores].sum(axis=1)
    shelters['total_score'] = shelters['total_score'] / len(scores)
    st.table(shelters)

    shelters = shelters.sort_values(by='total_score', ascending=False)
    shelters = shelters.head(3)
    st.table(shelters)
    
    shelters = [
        {"title": "Shelter 1", "description": "This is the 1st shelter",},
        {"title": "Shelter 2", "description": "This is the 2nd shelter.",},
        {"title": "Shelter 3", "description": "This is the 3rd shelter.",}
    ]

    # Display the current shelter information
    shelter = shelters[st.session_state.shelter_index]
    st.write(shelter["description"])
    
    # Create two columns
    col1, col2 = st.columns([1,1])
    
    # Add buttons to each column
    with col1:
        if st.button("Previous"):
            if st.session_state.shelter_index > 0:
                st.session_state.shelter_index -= 1
                st.experimental_rerun()
    
    with col2:
        if st.button("Next"):
            if st.session_state.shelter_index < len(shelters) - 1:
                st.session_state.shelter_index += 1
                st.experimental_rerun()