Spaces:
Runtime error
Runtime error
TiankaiHang
commited on
Commit
·
6c26e0d
1
Parent(s):
29cd0de
sync
Browse files
app.py
CHANGED
@@ -109,9 +109,11 @@ def predict(
|
|
109 |
random.seed(seed)
|
110 |
np.random.seed(seed)
|
111 |
torch.manual_seed(seed)
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
115 |
|
116 |
if isinstance(input_img, str):
|
117 |
if input_img.startswith("http"):
|
@@ -129,7 +131,10 @@ def predict(
|
|
129 |
else:
|
130 |
input_image = ImageOps.fit(input_image, (width, height), method=Image.LANCZOS)
|
131 |
input_image = 2 * torch.tensor(np.array(input_image)).float() / 255 - 1
|
132 |
-
|
|
|
|
|
|
|
133 |
|
134 |
# if PIL Image
|
135 |
elif isinstance(input_img, Image.Image):
|
@@ -144,7 +149,10 @@ def predict(
|
|
144 |
else:
|
145 |
input_image = ImageOps.fit(input_image, (width, height), method=Image.LANCZOS)
|
146 |
input_image = 2 * torch.tensor(np.array(input_image)).float() / 255 - 1
|
147 |
-
|
|
|
|
|
|
|
148 |
elif isinstance(input_img, dict):
|
149 |
input_image = input_img["image"].convert("RGB")
|
150 |
width, height = input_image.size
|
@@ -158,26 +166,36 @@ def predict(
|
|
158 |
else:
|
159 |
input_image = ImageOps.fit(input_image, (width, height), method=Image.LANCZOS)
|
160 |
input_image = 2 * torch.tensor(np.array(input_image)).float() / 255 - 1
|
161 |
-
|
|
|
|
|
|
|
162 |
|
163 |
assert input_image is not None
|
164 |
# print input image size
|
165 |
print(input_image.shape, factor, width, height)
|
166 |
|
167 |
-
with torch.no_grad(), autocast("cuda"):
|
|
|
168 |
cond = {}
|
169 |
cond["c_crossattn"] = [model.get_learned_conditioning([edit])]
|
170 |
cond["c_concat"] = [model.encode_first_stage(input_image).mode()]
|
171 |
|
172 |
uncond = {}
|
173 |
if "txt_embed" in additional:
|
174 |
-
|
|
|
|
|
|
|
175 |
else:
|
176 |
uncond["c_crossattn"] = [null_token]
|
177 |
if "img_embed" in additional:
|
178 |
# uncond["c_concat"] = [additional["img_embed"].cuda()]
|
179 |
# resize to cond["c_concat"][0]
|
180 |
-
|
|
|
|
|
|
|
181 |
uncond["c_concat"][0] = F.interpolate(uncond["c_concat"][0], size=cond["c_concat"][0].shape[-2:], mode="bilinear", align_corners=False)
|
182 |
else:
|
183 |
uncond["c_concat"] = [torch.zeros_like(cond["c_concat"][0])]
|
@@ -269,7 +287,10 @@ def main(ckpt="checkpoints/v1-5-pruned-emaonly-adaption-task-humanalign.ckpt", a
|
|
269 |
|
270 |
vae_ckpt = None
|
271 |
model = load_model_from_config(config, ckpt, vae_ckpt)
|
272 |
-
|
|
|
|
|
|
|
273 |
|
274 |
model_wrap = K.external.CompVisDenoiser(model)
|
275 |
model_wrap_cfg = CFGDenoiser(model_wrap)
|
|
|
109 |
random.seed(seed)
|
110 |
np.random.seed(seed)
|
111 |
torch.manual_seed(seed)
|
112 |
+
try:
|
113 |
+
torch.cuda.manual_seed(seed)
|
114 |
+
torch.cuda.empty_cache()
|
115 |
+
except:
|
116 |
+
pass
|
117 |
|
118 |
if isinstance(input_img, str):
|
119 |
if input_img.startswith("http"):
|
|
|
131 |
else:
|
132 |
input_image = ImageOps.fit(input_image, (width, height), method=Image.LANCZOS)
|
133 |
input_image = 2 * torch.tensor(np.array(input_image)).float() / 255 - 1
|
134 |
+
if torch.cuda.is_available():
|
135 |
+
input_image = rearrange(input_image, "h w c -> 1 c h w").cuda()
|
136 |
+
else:
|
137 |
+
input_image = rearrange(input_image, "h w c -> 1 c h w")
|
138 |
|
139 |
# if PIL Image
|
140 |
elif isinstance(input_img, Image.Image):
|
|
|
149 |
else:
|
150 |
input_image = ImageOps.fit(input_image, (width, height), method=Image.LANCZOS)
|
151 |
input_image = 2 * torch.tensor(np.array(input_image)).float() / 255 - 1
|
152 |
+
if torch.cuda.is_available():
|
153 |
+
input_image = rearrange(input_image, "h w c -> 1 c h w").cuda()
|
154 |
+
else:
|
155 |
+
input_image = rearrange(input_image, "h w c -> 1 c h w")
|
156 |
elif isinstance(input_img, dict):
|
157 |
input_image = input_img["image"].convert("RGB")
|
158 |
width, height = input_image.size
|
|
|
166 |
else:
|
167 |
input_image = ImageOps.fit(input_image, (width, height), method=Image.LANCZOS)
|
168 |
input_image = 2 * torch.tensor(np.array(input_image)).float() / 255 - 1
|
169 |
+
if torch.cuda.is_available():
|
170 |
+
input_image = rearrange(input_image, "h w c -> 1 c h w").cuda()
|
171 |
+
else:
|
172 |
+
input_image = rearrange(input_image, "h w c -> 1 c h w")
|
173 |
|
174 |
assert input_image is not None
|
175 |
# print input image size
|
176 |
print(input_image.shape, factor, width, height)
|
177 |
|
178 |
+
# with torch.no_grad(), autocast("cuda"):
|
179 |
+
with torch.no_grad():
|
180 |
cond = {}
|
181 |
cond["c_crossattn"] = [model.get_learned_conditioning([edit])]
|
182 |
cond["c_concat"] = [model.encode_first_stage(input_image).mode()]
|
183 |
|
184 |
uncond = {}
|
185 |
if "txt_embed" in additional:
|
186 |
+
if torch.cuda.is_available():
|
187 |
+
uncond["c_crossattn"] = [additional["txt_embed"].cuda().unsqueeze(0)]
|
188 |
+
else:
|
189 |
+
uncond["c_crossattn"] = [additional["txt_embed"].unsqueeze(0)]
|
190 |
else:
|
191 |
uncond["c_crossattn"] = [null_token]
|
192 |
if "img_embed" in additional:
|
193 |
# uncond["c_concat"] = [additional["img_embed"].cuda()]
|
194 |
# resize to cond["c_concat"][0]
|
195 |
+
if torch.cuda.is_available():
|
196 |
+
uncond["c_concat"] = [additional["img_embed"].cuda()]
|
197 |
+
else:
|
198 |
+
uncond["c_concat"] = [additional["img_embed"]]
|
199 |
uncond["c_concat"][0] = F.interpolate(uncond["c_concat"][0], size=cond["c_concat"][0].shape[-2:], mode="bilinear", align_corners=False)
|
200 |
else:
|
201 |
uncond["c_concat"] = [torch.zeros_like(cond["c_concat"][0])]
|
|
|
287 |
|
288 |
vae_ckpt = None
|
289 |
model = load_model_from_config(config, ckpt, vae_ckpt)
|
290 |
+
if torch.cuda.is_available():
|
291 |
+
model.eval().cuda()
|
292 |
+
else:
|
293 |
+
model.eval()
|
294 |
|
295 |
model_wrap = K.external.CompVisDenoiser(model)
|
296 |
model_wrap_cfg = CFGDenoiser(model_wrap)
|