Spaces:
Runtime error
Runtime error
File size: 5,540 Bytes
7ae68fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
# --------------------------------------------------------
# InstructDiffusion
# Based on instruct-pix2pix (https://github.com/timothybrooks/instruct-pix2pix)
# Modified by Binxin Yang ([email protected])
# --------------------------------------------------------
from __future__ import annotations
import os
import random
import copy
import json
import math
from pathlib import Path
from typing import Any
import numpy as np
import torch
import torchvision
from einops import rearrange
from PIL import Image
from torch.utils.data import Dataset
from dataset.seg.refcoco import REFER
class RefCOCODataset(Dataset):
def __init__(
self,
path: str,
split: str = "train",
min_resize_res: int = 256,
max_resize_res: int = 256,
crop_res: int = 256,
flip_prob: float = 0.0,
transparency: float = 0.0,
test: bool = False,
):
assert split in ("train", "val", "test")
self.path = path
self.min_resize_res = min_resize_res
self.max_resize_res = max_resize_res
self.crop_res = crop_res
self.flip_prob = flip_prob
self.G_ref_dataset=REFER(data_root=path)
self.IMAGE_DIR = os.path.join(path, 'images/train2014')
self.list_ref=self.G_ref_dataset.getRefIds(split=split)
self.transparency = transparency
self.test = test
seg_diverse_prompt_path = 'dataset/prompt/prompt_seg.txt'
self.seg_diverse_prompt_list=[]
with open(seg_diverse_prompt_path) as f:
line=f.readline()
while line:
line=line.strip('\n')
self.seg_diverse_prompt_list.append(line)
line=f.readline()
color_list_file_path='dataset/prompt/color_list_train_small.txt'
self.color_list=[]
with open(color_list_file_path) as f:
line = f.readline()
while line:
line_split = line.strip('\n').split(" ")
if len(line_split)>1:
temp = []
for i in range(4):
temp.append(line_split[i])
self.color_list.append(temp)
line = f.readline()
def __len__(self) -> int:
return len(self.list_ref)
def _augmentation_new(self, image, label):
# Cropping
h, w = label.shape
if h > w:
start_h = random.randint(0, h - w)
end_h = start_h + w
image = image[start_h:end_h]
label = label[start_h:end_h]
elif h < w:
start_w = random.randint(0, w - h)
end_w = start_w + h
image = image[:, start_w:end_w]
label = label[:, start_w:end_w]
else:
pass
image = Image.fromarray(image).resize((self.min_resize_res, self.min_resize_res), resample=Image.Resampling.LANCZOS)
image = np.asarray(image, dtype=np.uint8)
label = Image.fromarray(label).resize((self.min_resize_res, self.min_resize_res), resample=Image.Resampling.NEAREST)
label = np.asarray(label, dtype=np.int64)
return image, label
def __getitem__(self, i: int) -> dict[str, Any]:
ref_ids = self.list_ref[i]
ref = self.G_ref_dataset.loadRefs(ref_ids)[0]
sentences = random.choice(ref['sentences'])['sent']
prompt = random.choice(self.seg_diverse_prompt_list)
color = random.choice(self.color_list)
color_name = color[0]
prompt = prompt.format(color=color_name.lower(), object=sentences.lower())
R, G, B = color[3].split(",")
R = int(R)
G = int(G)
B = int(B)
image_name = self.G_ref_dataset.loadImgs(ref['image_id'])[0]['file_name']
image_path = os.path.join(self.IMAGE_DIR,image_name)
mask = self.G_ref_dataset.getMask(ref=ref)['mask']
image = Image.open(image_path).convert("RGB")
image = np.asarray(image)
image, mask = self._augmentation_new(image,mask)
mask = (mask == 1)
image_0 = Image.fromarray(image)
image_1 = copy.deepcopy(image)
image_1[:,:,0][mask]=self.transparency*image_1[:,:,0][mask]+(1-self.transparency)*R
image_1[:,:,1][mask]=self.transparency*image_1[:,:,1][mask]+(1-self.transparency)*G
image_1[:,:,2][mask]=self.transparency*image_1[:,:,2][mask]+(1-self.transparency)*B
image_1 = Image.fromarray(image_1)
reize_res = torch.randint(self.min_resize_res, self.max_resize_res + 1, ()).item()
image_0 = image_0.resize((reize_res, reize_res), Image.Resampling.LANCZOS)
image_1 = image_1.resize((reize_res, reize_res), Image.Resampling.LANCZOS)
image_0 = rearrange(2 * torch.tensor(np.array(image_0)).float() / 255 - 1, "h w c -> c h w")
image_1 = rearrange(2 * torch.tensor(np.array(image_1)).float() / 255 - 1, "h w c -> c h w")
crop = torchvision.transforms.RandomCrop(self.crop_res)
flip = torchvision.transforms.RandomHorizontalFlip(float(self.flip_prob))
image_0, image_1 = flip(crop(torch.cat((image_0, image_1)))).chunk(2)
mask = torch.tensor(mask).float()
crop = torchvision.transforms.RandomCrop(self.crop_res)
flip = torchvision.transforms.RandomHorizontalFlip(float(self.flip_prob))
image_0, image_1 = flip(crop(torch.cat((image_0, image_1)))).chunk(2)
return dict(edited=image_1, edit=dict(c_concat=image_0, c_crossattn=prompt)) |